140. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XIV

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1964)

Let $T(\lambda)$ be such a function as was defined in the preceding paper (that is, in Part XIII) [cf. Proc. Japan Acad., Vol. 40, No. 7 (1964)]. In the present paper we shall derive another formula of the expansion of $T(\lambda)$ and shall discuss some of its applications.

Since, as we have already shown in Part XIII, the form of the expansion by series or by integrals of $T(\lambda)$ outside a suitably large circle with center at the origin is exactly similar to that of the function $S(\lambda)$ in Theorem 1 [cf. Proc. Japan Acad., Vol. 38, No. 6, 265-267 (1962)], we can establish the following propositions for the question as to whether the ordinary part of $T(\lambda)$ is a polynomial in λ or a transcendental integral function.

Proposition A. Let $T(\lambda),\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots, D_{j},(j=1,2,3, \cdots, n)$, and ρ be the same notations as those used in Theorem 33 respectively, and $M_{T}(\rho, 0)$ the maximum modulus of $T(\lambda)$ for all the points on the circle $|\lambda|=\rho$. Then a necessary and sufficient condition that the ordinary part of $T(\lambda)$ be a polynomial in λ of the degree less than or equal to d is that there exist a positive constant K and a suitably large number σ such that

$$
M_{T}(r, 0) \leqq K r^{d}
$$

for every r with $\max \left[\sup _{\nu}\left|\lambda_{\nu}\right|, \max _{j}\left(\max _{z \in D_{j}}|z|\right)\right]<\sigma<r<\infty \quad[c f$. Proc. Japan Acad., Vol. 38, No. 10, 706-707 (1962)].

Proposition B. Let $T(\lambda), \rho$, and $M_{T}(\rho, 0)$ be the same notations as above respectively. Then a necessary and sufficient condition that the ordinary part of $T(\lambda)$ be a transcendental integral function of the order $d>0$ is that

$$
\varlimsup_{\rho \rightarrow \infty} \frac{\log \log M_{T}(\rho, 0)}{\log \rho}=d>0 \quad[\text { cf. loc. cit., 708-709]. }
$$

In fact, these propositions can be shown by replacing $S(\lambda)$ in the proofs of Theorems 13 and 14 by $T(\lambda)$. As for Proposition A, however, we can simplify it by making use of the following theorem derived from the already established expansion by series of $T(\lambda)$ outside a suitably large circle with center at the origin.

Theorem 38. Let $T(\lambda)$ and ρ be the same notations as those used in Theorem 33 respectively, and let

