140. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XIV

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1964)

Let $T(\lambda)$ be such a function as was defined in the preceding paper (that is, in Part XIII) [cf. Proc. Japan Acad., Vol. 40, No. 7 (1964)]. In the present paper we shall derive another formula of the expansion of $T(\lambda)$ and shall discuss some of its applications.

Since, as we have already shown in Part XIII, the form of the expansion by series or by integrals of $T(\lambda)$ outside a suitably large circle with center at the origin is exactly similar to that of the function $S(\lambda)$ in Theorem 1 [cf. Proc. Japan Acad., Vol. 38, No. 6, 265-267 (1962)], we can establish the following propositions for the question as to whether the ordinary part of $T(\lambda)$ is a polynomial in λ or a transcendental integral function.

Proposition A. Let $T(\lambda)$, $\{\lambda_{\nu}\}_{\nu=1,2,3,...}$, D_{j} , $(j=1,2,3,\dots,n)$, and ρ be the same notations as those used in Theorem 33 respectively, and $M_{T}(\rho, 0)$ the maximum modulus of $T(\lambda)$ for all the points on the circle $|\lambda| = \rho$. Then a necessary and sufficient condition that the ordinary part of $T(\lambda)$ be a polynomial in λ of the degree less than or equal to d is that there exist a positive constant K and a suitably large number σ such that

 $M_{T}(r, 0) \leq Kr^{d}$

for every r with $\max [\sup_{z} |\lambda_{z}|, \max_{j} (\max_{z \in D_{j}} |z|)] < \sigma < r < \infty$ [cf. Proc. Japan Acad., Vol. 38, No. 10, 706-707 (1962)].

Proposition B. Let $T(\lambda)$, ρ , and $M_T(\rho, 0)$ be the same notations as above respectively. Then a necessary and sufficient condition that the ordinary part of $T(\lambda)$ be a transcendental integral function of the order d>0 is that

$$\overline{\lim_{\rho \to \infty}} \frac{\log \log M_{T}(\rho, 0)}{\log \rho} = d > 0 \quad [\text{cf. loc. cit., 708-709}].$$

In fact, these propositions can be shown by replacing $S(\lambda)$ in the proofs of Theorems 13 and 14 by $T(\lambda)$. As for Proposition A, however, we can simplify it by making use of the following theorem derived from the already established expansion by series of $T(\lambda)$ outside a suitably large circle with center at the origin.

Theorem 38. Let $T(\lambda)$ and ρ be the same notations as those used in Theorem 33 respectively, and let