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(Comm. by Kinjir6 KUNUGI, Mod.A., Oct. 12, 1964)

1. In the theory of topological linear spaces, many properties
of Montel spaces have been studied. In this paper, we shall investi-
gate the properties of the spaces having weaker condition than Montel
spaces, called "quasi-Montel spaces". Throughout this paper, termi-
nology and notation are the same as in [1, if nothing otherwise is
mentioned. For example, a Montel space means a locally convex
separative topological linear space in which every bounded subset is
relatively compact, and which is not necessarily tonnel.

Definition. We say that a locally convex separative topological
linear space E is a quasi-Montel space, if and only if each convex
weakly compact (a(E, E’)-compact) subset is compact for the original
topology of E.

Obviously, each Montel space is a quasi-Montel space.
Theorem 1. In order that a locally convex separative topological

linear space E is a Montel space, it is necessary and sucient that
E is a semi-reflexive1 quasi-Montel space.

Proof. Necessity is trivial.
Sufficiency: For any closed bounded subset A of E, there is a

convex closed bounded subset B containing A. From the semi-reflex-
ivity, B is a weakly compact subset. So B is compact, because E is
a quasi-Montel space. Therefore A is also compact.

Theorem 2.
a A subspace of a quasi-Montel space is a quasi-Montel space.

(b) A product space of quasi-Montel spaces is a quasi-Montel
space.

(c) A direct sum of quasi-Montel spaces is a quasi-Montel
space.

(d) A strict inductive limit of countable many quasi-Montel
spaces is a quasi-Montel space.

Proof. (a) Let E be a quasi-Montel space and F be a sub-
space of E. Each convex weakly compact (a(F, F’)-compact) subset A
of F is convex weakly compact (a(E, E’)-compact) in E. As E is a
quasi-Montel space, A is a compact subset of E. Therefore A is also
compact in F.

1) We say that a topological linear space E is semi-reflexive, if each continuous
linear functional on E’ is continuous for a(E’, E)-topology.


