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1. Basic notions. We shall understand by a rectangle any
closed nondegenerate interval of the Euclidean plane R. The letter
I will be reserved to denote a rectangle. Let I--a, b; a, b ex-
plicitly. When 0al and 2amin (bl--al, b--a.), we say that a

is admissible for I and we find it convenient to write

Further, Rec I will denote the class of all subrectangles of I (inclu-
sive of I itself).

Suppose that T is an additive continuous map of Rec I into the
Euclidean space R of dimension m. In other words, let the m co-
ordinates of the point T(J), where JeRec/, be additive continuous
functions of J in the usual sense Saks 4, Chap. III. If a is any
admissible number for I, the quotient

T.(x, y)--T([x--a, x-a; y--a,
defined for the points (x, y} of the rectangle I., is obviously a con-
tinuous map of I into the space R. We may say that T. is the
squarewise mean of T (for squares of side-length 2a).

Let g denote generically a continuous map of a rectangle K into, and let be a functional which assigns to each g a nonnegative
value (g)=(g; K)__<+. (It should be noted that not only the
map g, but also the rectangle K is supposed arbitrary; the space R,
however, is kept fixed.) If J is a subrectangle of K, the partial map
g lJ is continuous on J and we shall write r(g; j) for (g]J).

Given as above the map T and the functional , let t be a ge-
neric continuous map of I into R. We shall denote by M(, T),
or more expressly M(, T; I), the lower limit of (t; L) as a-0 and
p(T., t;/.)-0 simultaneously, where a,/., T. have the aforesaid mean-
ing and p indicates the ordinary distance, on I, between the two
maps T. and t. In other words, M(, T) means the supremum of
M(fl, , T) for all fl0, where M(fl, , T) is the infimum of ?/r(t;/.)
for all pairs (a, t} such that a<fl and p(T,, t; I,)<fl. (The last in-
equality is fulfilled if, for example, we choose for t any continuous
extension of T to the whole rectangle /.)

2. Aim of the note. By a nonparametric measurable surface
we shall mean a surface of the form z--f(x, y), where f is a finite
measurable function on a rectangle. We are interested in the theory


