132. The Area of Nonparametric Measurable Surfaces

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1964)

1. Basic notions. We shall understand by a rectangle any closed nondegenerate interval of the Euclidean plane \mathbb{R}^2 . The letter I will be reserved to denote a rectangle. Let $I = [a_1, b_1; a_2, b_2]$ explicitly. When $0 < \alpha < 1$ and $2\alpha < \min(b_1 - a_1, b_2 - a_2)$, we say that α is admissible for I and we find it convenient to write

 $I_{\alpha} = [a_1 + \alpha, b_1 - \alpha; a_2 + \alpha, b_2 - \alpha].$

Further, Rec I will denote the class of all subrectangles of I (inclusive of I itself).

Suppose that T is an *additive continuous map* of Rec I into the Euclidean space \mathbb{R}^m of dimension m. In other words, let the m coordinates of the point T(J), where $J \in \text{Rec } I$, be additive continuous functions of J in the usual sense [Saks 4, Chap. III]. If α is any admissible number for I, the quotient

 $T_{\alpha}(x, y) = T([x-\alpha, x+\alpha; y-\alpha, y+\alpha])/(4\alpha^2),$

defined for the points $\langle x, y \rangle$ of the rectangle I_{α} , is obviously a continuous map of I_{α} into the space \mathbb{R}^{m} . We may say that T_{α} is the squarewise mean of T (for squares of side-length 2α).

Let g denote generically a continuous map of a rectangle K into \mathbb{R}^m , and let Ψ be a functional which assigns to each g a nonnegative value $\Psi(g) = \Psi(g; K) \leq +\infty$. (It should be noted that not only the map g, but also the rectangle K is supposed arbitrary; the space \mathbb{R}^m , however, is kept fixed.) If J is a subrectangle of K, the partial map g|J is continuous on J and we shall write $\Psi(g; J)$ for $\Psi(g|J)$.

Given as above the map T and the functional Ψ , let t be a generic continuous map of I into \mathbb{R}^m . We shall denote by $M(\Psi, T)$, or more expressly $M(\Psi, T; I)$, the lower limit of $\Psi(t; I_{\alpha})$ as $\alpha \to 0$ and $\rho(T_{\alpha}, t; I_{\alpha}) \to 0$ simultaneously, where α , I_{α} , T_{α} have the aforesaid meaning and ρ indicates the ordinary distance, on I_{α} , between the two maps T_{α} and t. In other words, $M(\Psi, T)$ means the supremum of $M(\beta, \Psi, T)$ for all $\beta > 0$, where $M(\beta, \Psi, T)$ is the infimum of $\Psi(t; I_{\alpha})$ for all pairs $\langle \alpha, t \rangle$ such that $\alpha < \beta$ and $\rho(T_{\alpha}, t; I_{\alpha}) < \beta$. (The last inequality is fulfilled if, for example, we choose for t any continuous extension of T_{α} to the whole rectangle I.)

2. Aim of the note. By a nonparametric measurable surface we shall mean a surface of the form z=f(x, y), where f is a finite measurable function on a rectangle. We are interested in the theory