159. Remarks on Ninomiya's Domination Principle

By Masayuki Itô

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1964)

1. Introduction. In the *n*-dimensional Euclidean space \mathbb{R}^n $(n \ge 1)$, the potential of a given order α , $0 < \alpha < n$, of a measure μ in \mathbb{R}^n is defined by

$$U^{\mu}_{\alpha}(x) = \int |x-y|^{\alpha-n} d\mu(y),$$

provided the integral on the right exists. The kernel $|x-y|^{\alpha-n}$ will be called the kernel of order α . Let μ be a measure in \mathbb{R}^n . When the integral

$$\int\int |x-y|^{\alpha-n}d\mu(y)d\mu(x)$$

exists, we shall call it the α -energy of μ . We shall denote the inner capacity of a set A with respect to the kernel of order α by $C_{a}(A)$. A property is said to hold α -p.p.p. on a subset X in \mathbb{R}^{n} , when the property holds on X except a set E with $C_{a}(E)=0$. The measure μ in \mathbb{R}^{n} will be said to be α -finite, when the potential $U_{a}^{\mu}(x)$ is defined and finite α -p.p.p. in \mathbb{R}^{n} . We shall denote the support of a measure μ in \mathbb{R}^{n} by S_{μ} .

Ninomiya [3] proved the following domination principle.

In \mathbb{R}^n $(n \ge 3)$, let α be a positive number such that $0 < \alpha \le 2$, let μ be a positive measure with compact support such that the α -energy is finite, and let ν be a positive measure in \mathbb{R}^n . If

 $U^{\mu}_{\alpha}(x) \leq U^{\nu}_{\alpha}(x)$ on S_{μ} ,

then

$$U^{\mu}_{\beta}(x) \leq U^{
u}_{\beta}(x)$$
 in R^n

for any β such that $\alpha \leq \beta < n$.

He proved that the same domination principle is valid in R^2 if $0 < \alpha \le 1$. In this paper, we shall prove Ninomiya's domination principle in a possibly general form.

2. Ninomiya's domination principle. Lemma.¹⁾ In \mathbb{R}^n $(n \ge 1)$, let α be a positive number such that $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n=2 or n=1. Then the kernel of order α satisfies the balayage principle with respect to the kernel of order β for any β such that $\alpha \le \beta < n$, namely, for any p in \mathbb{R}^n and any closed set F, there exists a positive measure λ , supported by F, such that $U^{\lambda}_{\alpha}(x) = |x-p|^{\beta-n} \qquad \alpha-p.p.p.$ on F,

¹⁾ Ninomiya (Theorem 2 in [3]) showed this when $n \ge 3$ and F is compact.