158. On the Spectra of Uniformly Increasing Mappings

By Sadayuki YAMAMURO*

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1964)

Let E be a real Banach space, G be an open set and \overline{G} be its closure.

In [2], we have given the following definition:

A mapping f of \overline{G} in E is said to be $(\varepsilon_0, \delta_0)$ -uniformly increasing at $a \in G$ if

(i) $a+x\in \overline{G}$ if $||x|| \leq \delta_0$;

(ii) $||f_a(x) - \alpha x|| \ge \varepsilon_0 ||x||$ for any non-positive number α and any element x such that $||x|| \le \delta_0$, where $f_a(x) = f(a+x) - f(a)$.

The purpose of this paper is to prove the following **Theorem.** Assume that

- 1. F(x) is a completely continuous mapping of \overline{G} in E;
- 2. $F(a) = \lambda_0 a$ for some $\lambda_0 \neq 0$ and some $a \in G$;
- 3. $f(x) = x \frac{1}{\lambda_0} F(x)$ is $(\varepsilon_0, \delta_0)$ -uniformly increasing at a.

Then, we have that

1°. a is an isolated fixed point of $\frac{1}{\lambda_0}F(x)$;

2°. For any λ such that $|\lambda - \lambda_0| < \min\left\{ |\lambda_0|, \frac{|\lambda_0|\varepsilon_0 \delta_0}{||a|| + \delta_0} \right\}$, there exists x_i such that

$$F(x_{\lambda}) = \lambda x_{\lambda} \quad and \quad ||x_{\lambda} - a|| \leq \frac{1}{|\lambda_0|\varepsilon_0} (||a|| + \delta_0)|\lambda - \lambda_0|.$$

Remark. A mapping F'(x) is said to be completely continuous on \overline{G} if it is continuous and the image $F'(\overline{G})$ is contained in a compact set.

Proof. 1°. Assume that a is not an isolated fixed point of $\frac{1}{\lambda_0}F(x)$, then there exists a sequence $\{x_n\}$ such that

 $\lim_{n\to\infty} x_n = 0 \quad \text{and} \quad F(a+x_n) = \lambda_0(a+x_n).$

Since $f(x) = x - \frac{1}{\lambda_0} F(x)$, we have

$$f(a+x_n) = (a+x_n) - \frac{1}{\lambda_0} F(a+x_n) = 0.$$

Now, since f(x) is $(\varepsilon_0, \delta_0)$ -uniformly increasing at a, we have

^{*)} Department of Mathematics, Institute of Advanced Studies, Australian National University.