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The purpose of this paper is to give a simple proof of a theorem
of Brauer concerning the principal blocks of characters of finite
groups (F4, Theorem 3, see also F3).

We refer to Brauer FI, F2; Brauer-Nesbitt F6; Osima 8, and
Curtis-Reiner 7 as for basic concepts and theorems about the blocks
of characters of finite groups.

1o Let G be a group of a finite order and let p be a fixed prime
.number. We choose the algebraic number field 19 such that the
absolutely irreducible representations of G can be written with coef-
ficients in 12. Let p be a prime ideal divisor of p in 12 and let
be the ring of all p-integers of /2, and l the residue class field of

oo (mod p). The residue class map of % onto I2 will be denoted by
an asterisk; c-c*.

If M is a subset of G, we write IMI for the number of elements
of M. The centralizer of M in G will be denoted by C(M)and the
normalizer of M in G by Ne(M).

The group algebra of G over l Will be denoted by F(G) and its
center by Z(G). If M is a subset of G, we write F_MJ for the ele-
ment of [’(G) defined by

(1.1) FM m.

If Kx, K,..-, K are the conjugate classes of G, the elements
K, FK, ..., FK form a basis of Z(G). Let us denote by k0, k, "",

k- the distinct linear characters of Z(G). The m (absolutely) irre-
ducible characters Z0-1, Z, "", X- of G are distributed into s
blocks B0, Bx, ..., B,_ for p. There exists a one-to-one correspondence
between the set of blocks of G and the set of linear characters of
Z(G). The block Bo-Bo(G) of G containing the principal character

:Z0-1 is called the principal block of G.
Since each primitive idempotent of Z(G) is associated with a

block of G, we shall denote by , the primitive idempotent associated
with B,. We then have

If we set


