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Apart from the alternating and symmetric groups, there are only
four groups known which are quadruply transitive. These are the
Mathieu groups M, M, M and M. on 11, 12, 23 and 24 letters,
respectively, of which M and M. are quintuply transitive.

Concerning the existence of multiply transitive groups other than
the alternating and symmetric groups, H. Wielandt 2 obtained an
interesting result. The theorem of Wielandt is as follows:

Let G be an 8-fold transitive groups of degree n. If the outer
automorphism group of any simple subgroup of G is solvable, $hen

G is S or A.
Improving the theorem of Wielandt we have
Theorem. Let G be a 7-fold transitive group of degree

satisfying the same assumption as above. Then G is S or
This theorem is obtained immediately from a lemma (2) in 2

and the following
Proposition. Let G be a quintuply transitive group on {1, 2,.., n} and H be he subgroup of G consisting of all he elements

leaving the three letters 1, 2 and 3 invarian. If H contains a
normal subgroup Q which is regular on {4, 5, ..., n}, then G is one
of $he following groups: S, S, S, Ar or M.

Under the assumption of the proposition, by using a theorem of
Jordan ([1], p. 72), we can show that Q is an elementary abelian.
group of exponent 2 or 3. When the exponent is 3, we can prove
that n must be 6, 12 or 30. The case of n--30 will be excluded by
a theorem of Miller ([1], Theorem 5.7.2). For n--6 or 12, G is S
or Mx.

When the exponent is 2, we can say more. Namely we have
Proposition. Let G be a quadruply transitive group on {1, 2,.., n} and H be $he subgroup of G consis$ing of all $he elements

leaving $he gwo leg$ers 1 and 2 invariang. If n is even and H
con$ains a normal subgroup which is regular on {3, 4, ..., n), $hen

G is one of $he following groups: S, S or A.
The detailed proofs of the propositions will be given elsewhere.


