169. On the Permutability of Congruences on Algebraic Systems*)

By Tsuyoshi Fujiwara
University of Osaka Prefecture
(Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1964)

K. Shoda discussed in his papers [8], [10], and his book [9] the structure of an algebraic system \mathfrak{A} under the following conditions:
I. \mathfrak{Y} has a zero-element, i. e. \mathfrak{A} has a one-element subsystem.
II. Any subsystem of $\mathfrak{\Re}$ generated by two normal subsystems of \mathfrak{A} is a normal subsystem of \mathfrak{A}.
III. Any natural meromorphism between any two residue class systems of \mathfrak{H} is classable.
G. Birkhoff discussed in his book [1] the structure of an algebraic system \mathfrak{A} under the following conditions:
I. \mathfrak{V} has a one-element subsystem.

III*. Any two congruences on \mathfrak{N} are permutable.
K. Shoda told the author that the conditions III and III* are equivalent as stated in the introduction of the author's paper [2]. The conditions III and III* played the important role in their structure theories of algebraic systems.
A. I. Mal'cev proved in his paper [7] the following

Theorem. Let A be a set of composition-identities with respect to a system V of compositions. Then the following two conditions are equivalent:
(a) Any two congruences on any A-algebraic system are permutable.
(b) There exists a derived composition $f(\xi, \eta, \zeta)$ of V such that

$$
f(\xi, \eta, \eta) \stackrel{A}{=} \xi^{1)} \text { and } f(\xi, \xi, \eta) \stackrel{A}{=} \eta
$$

Moreover J. Lambek remarked in his paper [6] that each of the conditions (a) and (b) is equivalent to the following condition:
(c) Any meromorphism between any two A-algebraic systems is classable.
A. W. Goldie and the author have discussed in the papers [2], [3], [4], and [5] the structure of algebraic systems. The weak permutability and the local permutability of congruences have played the leading role in the theories of A. W. Goldie and of the author.

[^0]
[^0]: *) This paper was written while the author held a postdoctorate fellowship of the National Research Council of Canada.

 1) $f(\xi, \eta, \eta) \stackrel{A}{=} \xi$ denotes the fact that $f(x, y, y)=x$ holds for any elements x and y in any A-algebraic system, i.e. $f(\xi, \eta, \eta)=\xi$ is derived from A.
