168. Special Type of Separable Algebra over a Commutative Ring

By Teruo KANZAKI

Department of Mathematics, Osaka Gakugei Daigaku, Osaka (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1964)

In the previous paper [4], we considered a type of separable algebra over a field which has the simple ideal components whose degrees are all prime to the characteristic of the field. In this paper we consider the case of algebra over a commutative ring.

Let Δ be an algebra over a commutative ring R. In the enveloping algebra $\Delta^e = \Delta \bigotimes_R \Delta^0$ we consider the involution * defined by $(x \bigotimes y^0)^* = y \bigotimes x^0$ for $x \bigotimes y^0 \in \Delta^e$. We set $J = \{x \bigotimes 1^0 - 1 \bigotimes x^0 \mid x \in \Delta\}$, then $J^* = J$. Let A be the right annihilator of J in Δ^e , then A^* is the left annihilator of J and a left ideal in Δ^e . Let $\varphi : \Delta^e \to \Delta$ be the Δ^e -homomorphism defined by $\varphi(x \bigotimes y^0) = xy$, then $\varphi(A^*)$ is a two sided ideal of Δ . In this paper we shall call Δ a strongly separable algebra over R when $\varphi(A^*) = \Delta$.

In §1, we shall show that Λ is a strongly separable algebra over R if and only if Λ is a separable algebra over R and $\Lambda = C \bigoplus [\Lambda, \Lambda]$ where C is the center of Λ and $[\Lambda, \Lambda]$ is the C-submodule of Λ generated by xy - yx for all $x, y \in \Lambda$. In §2, we consider an R-algebra Λ such that Λ is an R-projective module, and we shall show that if $A \neq 0$ then there exists a non zero left ideal in Λ which is generated by a finite number of elements as R-module. Finally, we have that for a central separable R-algebra Λ , Λ is hereditary if and only if R is hereditary. In this paper we assume that every rings and algebras have identity elements.

1. Strongly separable algebra.

PROPOSITION 1. Let Λ be an algebra over R. Then $\varphi(A^*) = \Lambda$ if and only if $\Lambda^e = \Lambda^e J \bigoplus A^*$. If $\varphi(A^*) = \Lambda$ then Λ is a separable algebra over R and $\Lambda = C \bigoplus [\Lambda, \Lambda]$, where C is the center of Λ and $[\Lambda, \Lambda]$ is the C-submodule of Λ generated by xy - yx for all $x, y \in \Lambda$. Proof. If $\Lambda^e = \Lambda^e J \bigoplus \Lambda^*$ then we have $\varphi(A^*) = \Lambda$. Now we assume $\varphi(A^*) = \Lambda$. Since Ker $\varphi = \Lambda^e J$, we have $\Lambda^e = A^* + \Lambda^e J$. Therefore we have $\Lambda^{e^*} = A^{**} + J^* \cdot \Lambda^{e^*}$ and $\Lambda^e = A + J\Lambda^e$. Let $1 \otimes 1^0 = z_1 + z_2$ with $z_1 \in A$, $z_2 \in J\Lambda^e$. If $x \in A^* \cap \Lambda^e J$ then $x = x \cdot 1 \otimes 1^0 = xz_1 + xz_2 = 0$. It follows that $A^* \cap \Lambda^e J = 0$ and $\Lambda^e = A^* \bigoplus \Lambda^e J$. Thus the first half of the proposition is proved. If $\varphi(A^*) = \Lambda$, then φ induces an isomorphism of A^* onto Λ therefore Λ is a separable algebra over R. Since $\Lambda^e = \Lambda^e J \bigoplus \Lambda^*$, there are orthogonal idempotents $e_1 \in \Lambda^e J$ and