167. Another Proof of a Theorem Concerning the Greatest Semilattice-Decomposition of a Semigroup

By Takayuki TAMURA

University of California, Davis, Calif. U.S.A. (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1964)

1. Introduction. For any semigroup S, consider any congruence ρ on S such that S/ρ is a semilattice, i.e., a commutative idempotent semigroup. Such a ρ is called a semilattice-congruence or simply s-congruence. As is well known, there is the smallest scongruence ρ_0 on S in the sense of inclusion [1-7]. Let $L=S/\rho_0$ and let $S_{\alpha}, \alpha \in L$, be a congruence class modulo ρ_0 :

$$S = \bigcup S_{\alpha}, \quad S_{\alpha} \cap S_{\beta} = \Box, \quad \alpha \neq \beta.$$

If the cardinal number |L| of L is exactly 1, that is, ρ_0 is the universal relation on S, then S is called *s*-indecomposable; if |L| > 1, then S is *s*-decomposable. The partition of S due to ρ_0 is called the greatest *s*-decomposition of S, and S/ρ_0 is called the greatest *s*-homomorphic image of S.

Theorem. In the greatest s-decomposition of a semigroup S, each congruence class S_{σ} is s-indecomposable.

This theorem was proved by the author [4] and recently stated by Petrich in [2] without proof. The purpose of this paper is to give a proof of this theorem from somewhat different point of view. Proposition 1 below can be proved by using the above theorem, but here we are going to prove Proposition 1 directly and then to prove the above theorem by using it.

2. Preliminaries. Let a_1, \dots, a_n be elements of a semigroup S. If an element a of S is the product of all of a_1, \dots, a_n admitting repeated use, then a is said to be fully generated by a_1, \dots, a_n . The set G of all the elements of S which are fully generated by a_1, \dots, a_n is a non-empty subsemigroup of S. G is called the subsemigroup of S fully generated by a_1, \dots, a_n .

Let \mathcal{F}_0 be the free semigroup generated by n distinct letters a_1, \dots, a_n in the usual sense, and \mathcal{F} be the subsemigroup of \mathcal{F}_0 fully generated by a_1, \dots, a_n . \mathcal{F} is composed of all words any one of which contains all of a_1, \dots, a_n .

Let ρ be any s-congruence on \mathcal{F} . We denote by φ the natural mapping of \mathcal{F} upon \mathcal{F}/ρ , that is, for $A \in \mathcal{F}, A\varphi$ of \mathcal{F}/ρ is the congruence class modulo ρ containing A. For convenience of the