36. On Closures of Vector Subspaces. II

By Shouro Kasahara
Kobe University
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1965)

5. We shall prove in this section the following theorem. ${ }^{11}$

Theorem 6. Let M be an infinite dimensional vector subspace of a vector space E, and let τ_{0} be a locally convex Hausdorff topology on M. Let us denote by M^{\prime} the dual of M for the topology τ_{0}, and by codim $\left(M^{\prime}\right)$ the codimension of M^{\prime} in M^{*}.
1° If $\operatorname{codim}(M)$ is infinite, then $\operatorname{codim}(M) \leqq 2^{\left.\text {codim (} M^{\prime}\right)}$ implies that for every projection p of E onto M, there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and p is continuous for the topologies τ and τ_{0}.

If $\operatorname{codim}(M)$ is finite, then $\operatorname{codim}(M) \leqq \operatorname{codim}\left(M^{\prime}\right)$ implies the same conclusion.

Conversely
2° If there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and a projection p of E onto M is continuous for the topologies τ and τ_{0}, then either $\operatorname{codim}(M) \leqq 2^{\text {codim (M') }}$ or $\operatorname{codim}(M) \leqq \operatorname{codim}\left(M^{\prime}\right)$ according as $\operatorname{codim}(M)$ is infinite or finite.

Proof of 1°. Suppose first that the dimension of the vector subspace $N=p^{-1}(0)$ is infinite. The inequality $\operatorname{dim}(N) \leqq 2^{\text {codim }\left(M^{\prime}\right)}$ shows that there exists a vector subspace N^{\prime} of N^{*} such that $\operatorname{dim}\left(N^{\prime}\right) \leqq$ codim $\left(M^{\prime}\right)$ and the dual system (N, N^{\prime}) is separated. ${ }^{2)}$ Let $B_{N^{\prime}}$ be a base of N^{\prime}; then, since $\operatorname{dim}\left(N^{\prime}\right) \leqq \operatorname{codim}\left(M^{\prime}\right)$, we can find a linearly independent subset B of an algebraic supplement of M^{\prime} in M^{*} with cardinal number $\operatorname{dim}\left(N^{\prime}\right)$. Let φ be a one-to-one mapping of $B_{N^{\prime}}$ onto B. We define, for each $y^{\prime} \in B_{N^{\prime}}$, a linear functional \bar{y}^{\prime} on E by setting

$$
\left\langle x, \bar{y}^{\prime}\right\rangle= \begin{cases}\left\langle x, \varphi\left(y^{\prime}\right)\right\rangle & \text { for } x \in M, \\ \left\langle x, y^{\prime}\right\rangle & \text { for } x \in N .\end{cases}
$$

1) This is a generalization of Theorem 1 of S. Kasahara: Locally convex metrizable topologies which make a given vector subspace dense. Proc. Japan Acad., 40, 718-722 (1964); to this paper, corrections should be made as follows: Page 718, 'arized' should read 'arisen', and page 719, 'powder' should read 'power'.
2) See Lemma 4 of S. Kasahara: On closures of vector subspaces, I. Proc. Japan Acad., 40, 723-727 (1964); the preceding sentence of Lemma 4 which begins with the word 'Consequently' should read as follows: Consequently, if the dual system (E, E^{\prime}) is separated, we have $\operatorname{dim}(E) \leqq \cdots \cdot$
