36. On Closures of Vector Subspaces. II

By Shouro KASAHARA

Kobe University

(Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1965)

5. We shall prove in this section the following theorem.¹⁾

THEOREM 6. Let M be an infinite dimensional vector subspace of a vector space E, and let τ_0 be a locally convex Hausdorff topology on M. Let us denote by M' the dual of M for the topology τ_0 , and by $\operatorname{codim}(M')$ the codimension of M' in M^* .

1° If codim (M) is infinite, then codim $(M) \leq 2^{\operatorname{codim}(M')}$ implies that for every projection p of E onto M, there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and p is continuous for the topologies τ and τ_0 .

If $\operatorname{codim}(M)$ is finite, then $\operatorname{codim}(M) \leq \operatorname{codim}(M')$ implies the same conclusion.

Conversely

 2° If there exists a locally convex Hausdorff topology τ on E such that M is dense in E for the topology τ and a projection p of E onto M is continuous for the topologies τ and τ_0 , then either $\operatorname{codim}(M) \leq 2^{\operatorname{codim}(M')}$ or $\operatorname{codim}(M) \leq \operatorname{codim}(M')$ according as $\operatorname{codim}(M)$ is infinite or finite.

Proof of 1°. Suppose first that the dimension of the vector subspace $N=p^{-1}(0)$ is infinite. The inequality $\dim(N) \leq 2^{\operatorname{codim}(M')}$ shows that there exists a vector subspace N' of N^* such that $\dim(N') \leq \operatorname{codim}(M')$ and the dual system (N,N') is separated. Let $B_{N'}$ be a base of N'; then, since $\dim(N') \leq \operatorname{codim}(M')$, we can find a linearly independent subset B of an algebraic supplement of M' in M^* with cardinal number $\dim(N')$. Let φ be a one-to-one mapping of $B_{N'}$ onto B. We define, for each $y' \in B_{N'}$, a linear functional \overline{y}' on E by setting

$$\langle x, \overline{y}' \rangle = \begin{cases} \langle x, \varphi(y') \rangle & \text{for } x \in M, \\ \langle x, y' \rangle & \text{for } x \in N. \end{cases}$$

¹⁾ This is a generalization of Theorem 1 of S. Kasahara: Locally convex metrizable topologies which make a given vector subspace dense. Proc. Japan Acad., 40, 718-722 (1964); to this paper, corrections should be made as follows: Page 718, 'arized' should read 'arisen', and page 719, 'powder' should read 'power'.

²⁾ See Lemma 4 of S. Kasahara: On closures of vector subspaces, I. Proc. Japan Acad., 40, 723-727 (1964); the preceding sentence of Lemma 4 which begins with the word 'Consequently' should read as follows: Consequently, if the dual system (E, E') is separated, we have $\dim(E) \leq \cdots$