34. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XV

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

Let N_j , $D_j(j=1, 2, 3, \dots, n)$, $\{\lambda_\nu\}_{\nu=1,2,3,\dots}$, $f_{1\alpha}$, $f_{2\alpha}$, $f_{1\alpha}'$, $f_{2\alpha}'$, $g_{j\beta}$, $g_{j\beta}'$, and $T(\lambda)$ be the same notations as those defined in Part XIII (cf. Proc. Japan Acad., Vol. 40, No. 7, 492-493 (1964)), and let $R(\lambda)$ be the ordinary part of $T(\lambda)$. Then

$$T(\lambda) = R(\lambda) + \sum_{\substack{lpha = 1 \ j = 2}}^{m} ((\lambda I - N_1)^{-lpha} (f_{1lpha} + f_{2lpha}), (f_{1lpha}' + f_{2lpha}')) + \sum_{j=2}^{n} \sum_{\beta=1}^{k_j} ((\lambda I - N_j)^{-eta} g_{jeta}, g_{jeta}'),$$

and $T(\lambda)$ possesses the properties (i), (ii), and (iii) described in Part XIII. Analytically speaking, the first principal part of $T(\lambda)$ is given by

$$\sum_{\alpha=1}^{m} ((\lambda I - N_1)^{-\alpha} f_{1\alpha}, f_{1\alpha}') = \sum_{\alpha=1}^{m} \sum_{\nu=1}^{\infty} \frac{c_{\alpha}^{(\nu)}}{(\lambda - \lambda_{\nu})^{\alpha}}$$

where if $\lambda_1 = \lambda_2 = \cdots = \lambda_{m_1}, \lambda_{m_1+1} = \lambda_{m_1+2} = \cdots = \lambda_{m_2}$, and so on, then $\sum_{\nu=1}^{\infty} \frac{c_{\omega}^{(\nu)}}{(\lambda - \lambda_{\nu})^{\omega}}$ means the sum

$$\frac{c_{\alpha}^{(1)}}{(\lambda-\lambda_1)^{\alpha}}+\frac{c_{\alpha}^{(m_1+1)}}{(\lambda-\lambda_{m_1+1})^{\alpha}}+\cdots=\frac{c_{\alpha}^{(m_1)}}{(\lambda-\lambda_{m_1})^{\alpha}}+\frac{c_{\alpha}^{(m_2)}}{(\lambda-\lambda_{m_2})^{\alpha}}+\cdots,$$

as will be seen by the definition of $c_{\alpha}^{(\nu)}$ in the above-mentioned paper; and in addition, the second principal part of $T(\lambda)$ is given by

$$\sum_{lpha=1}^{m} ((\lambda I - N_1)^{-lpha} f_{2lpha}, f_{2lpha}') + \sum_{j=2}^{n} \sum_{eta=1}^{j} ((\lambda I - N_j)^{-eta} g_{jeta}, g_{jeta}') = \sum_{lpha=1}^{m} \int_{\Omega \cup \mathcal{D}_1} \frac{1}{(\lambda - z)^{lpha}} d(K^{(1)}(z) f_{2lpha}, f_{2lpha}') + \sum_{j=2}^{n} \sum_{eta=1}^{k_j} \int_{\mathcal{D}_j} \frac{1}{(\lambda - z)^{eta}} d(K^{(j)}(z) g_{jeta}, g_{jeta}'),$$

where Ω denotes the set of all those accumulation points of $\{\lambda_{\nu}\}_{\nu=1,2,3,...}$ which do not belong to $\{\lambda_{\nu}\}$ itself and $\{K^{(j)}(z)\}$ is the complex spectral family associated with the bounded normal operator N_j $(j=1, 2, 3, \dots, n)$. These facts are clear from the respective definitions of the notations $f_{1\alpha}$, $f_{2\alpha}$, $f'_{1\alpha}$, $f'_{2\alpha}$, $g_{j\beta}$, $g'_{j\beta}$, $c^{(\nu)}_{\alpha}$, N_j , and D_j .

Since, by definition, $\{\lambda_{\nu}\}$ is an arbitrarily prescribed bounded set of denumerably infinite complex numbers, we may and do suppose here that it is everywhere dense on an open rectifiable Jordan curve Γ ; and as a special case, we consider the function $\hat{T}(\lambda)$ defined by

(A)
$$\hat{T}(\lambda) = R(\lambda) + \sum_{\alpha=1}^{m} ((\lambda I - N_1)^{-\alpha} f_{1\alpha}, f'_{1\alpha}) + \sum_{j=2}^{n} \sum_{\beta=1}^{k_j} ((\lambda I - N_j)^{-\beta} g_{j\beta}, g'_{j\beta}).$$

Then it is obvious that every λ_{ν} is a pole of $\hat{T}(\lambda)$ in the sense of the