34. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XV

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by Kinjirô Kunugı, m.J.A., Feb. 12, 1965)

Let $N_{j}, D_{j}(j=1,2,3, \cdots, n),\left\{\lambda_{\psi}\right\}_{\nu=1,2, s, \ldots}, f_{1 \alpha}, f_{2 \alpha}, f_{1 \alpha}^{\prime}, f_{2 \alpha}^{\prime}, g_{j \beta}, g_{j \beta}^{\prime}$, and $T(\lambda)$ be the same notations as those defined in Part XIII (cf. Proc. Japan Acad., Vol. 40, No. 7, 492-493 (1964)), and let $R(\lambda)$ be the ordinary part of $T(\lambda)$. Then

$$
\begin{aligned}
& T(\lambda)=R(\lambda)+\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha}\left(f_{1 \alpha}+f_{2 \alpha}\right),\right. \\
& \left.\left(f_{1 \alpha}^{\prime}+f_{2 \alpha}^{\prime}\right)\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}}\left(\left(\lambda I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right),
\end{aligned}
$$

and $T(\lambda)$ possesses the properties (i), (ii), and (iii) described in Part XIII. Analytically speaking, the first principal part of $T(\lambda)$ is given by

$$
\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha} f_{1 \alpha}, f_{1 \alpha}^{\prime}\right)=\sum_{\alpha=1}^{m} \sum_{\nu=1}^{\infty} \frac{c_{\alpha}^{(\nu)}}{\left(\lambda-\lambda_{\nu}\right)^{\alpha}},
$$

where if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m_{1}}, \lambda_{m_{1}+1}=\lambda_{m_{1}+2}=\cdots=\lambda_{m_{2}}$, and so on, then $\sum_{\nu=1}^{\infty} \frac{\boldsymbol{c}_{\alpha}^{(\nu)}}{\left(\lambda-\lambda_{\nu}\right)^{\alpha}}$ means the sum

$$
\frac{c_{\alpha}^{(1)}}{\left(\lambda-\lambda_{1}\right)^{\alpha}}+\frac{c_{\alpha}^{\left(m_{1}+1\right)}}{\left(\lambda-\lambda_{m_{1}+1}\right)^{\alpha}}+\cdots=\frac{c_{\alpha}^{\left(m_{1}\right)}}{\left(\lambda-\lambda_{m_{1}}\right)^{\alpha}}+\frac{c_{\alpha}^{\left(m_{2}\right)}}{\left(\lambda-\lambda_{m_{2}}\right)^{\alpha}}+\cdots,
$$

as will be seen by the definition of $c_{\alpha}^{(\nu)}$ in the above-mentioned paper; and in addition, the second principal part of $T(\lambda)$ is given by
$\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha} f_{2 \alpha}, f_{2 \alpha}^{\prime}\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}}\left(\left(\lambda I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right)$
$=\sum_{\alpha=1}^{m} \int_{\Omega \cup D_{1}} \frac{1}{(\lambda-z)^{\alpha}} d\left(K^{(1)}(z) f_{2 \alpha}, f_{2 \alpha}^{\prime}\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}} \int_{D_{j}} \frac{1}{(\lambda-z)^{\beta}} d\left(K^{(j)}(z) g_{j \beta}, g_{j \beta}^{\prime}\right)$,
where Ω denotes the set of all those accumulation points of $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ which do not belong to $\left\{\lambda_{\nu}\right\}$ itself and $\left\{K^{(j)}(z)\right\}$ is the complex spectral family associated with the bounded normal operator $N_{j}(j=$ $1,2,3, \cdots, n)$. These facts are clear from the respective definitions of the notations $f_{1 \alpha}, f_{2 \alpha}, f_{1 \alpha}^{\prime}, f_{2 \alpha}^{\prime}, g_{j \beta}, g_{j \beta}^{\prime}, c_{\alpha}^{(\nu)}, N_{j}$, and D_{j}.

Since, by definition, $\left\{\lambda_{\nu}\right\}$ is an arbitrarily prescribed bounded set of denumerably infinite complex numbers, we may and do suppose here that it is everywhere dense on an open rectifiable Jordan curve Γ; and as a special case, we consider the function $\hat{T}(\lambda)$ defined by
(A) $\hat{T}(\lambda)=R(\lambda)+\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha} f_{1 \alpha}, f_{1 \alpha}^{\prime}\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}}\left(\left(\lambda I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right)$. Then it is obvious that every λ_{ν} is a pole of $\hat{T}(\lambda)$ in the sense of the

