31. Approximative Dimension of a Space of Analytic Functions

By Isao Miyazaki

Department of Mathematics, Saitama University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

Banach [1] introduced the concept of linear dimension into the theory of topological linear spaces. Extending the idea, Kolmogorov [2] defined the approximative dimension with a view to more definite comparison between dimensions of certain linear spaces. Besides the definition he gave some of its examples in the note [2]. Among them we find a formula determining the approximative dimension for the space A_{σ}^{s} of regular analytic functions defined on a domain G of s complex variables, with which the comparison of dimensions for different s leads to a reasonable result. The proof is not given, only it is mentioned that the formula can be derived by the same method as is used for the evaluation of ε -entropies. But A_{σ}^{s} with the topology considered here being countably normed, i.e. not having such a simple metric as is usually taken to define ε -entropies, the circumstances are somewhat more complicated, the proof of the formula seems by no means trivial.

The purpose of the present paper is to give a complete proof to the formula in the simplest case where s=1 and $G=\{z: |z|<1\}$. In the proof we use some results in the theory of ε -entropies [3]. For general s, because those results are also available, the proof given here remains unchanged in essentials, as long as G is suitably simple so that it can be reduced to a polycylinder.

DEFINITION (Kolmogorov). To every topological linear space Ewe assign such a family $\mathcal{Q}(E)$ of functions $\varphi(\varepsilon)$ defined for $\varepsilon > 0$ as follows. A function $\varphi(\varepsilon)$ belongs to $\mathcal{Q}(E)$ if and only if for every compact $K \subset E$ and every open neighborhood U of zero in E there exists a positive number ε_0 such that, when $\varepsilon < \varepsilon_0$, we can find $N \leq \varphi(\varepsilon)$ points x_1, \dots, x_N in E forming a ε -net of K relative to U, i.e.

$$K \subset \bigcup_{i=1}^{N} (x_i + \varepsilon U).$$

The family $\Phi(E)$ is called the approximative dimension of $E^{(1)}$.

Now let A_{σ} be the space of regular functions on the open disk

¹⁾ In Kolmogorov's original definition, the approximative dimension $d_a(E)$ of E is not the family $\Phi(E)$ itself, but defined by comparison: for two topological linear spaces E and E', $d_a(E) \leq d_a(E')$ if and only if $\Phi(E) \supset \Phi(E')$.