49. On a Criterion of Quasi-boundedness of Positive Harmonic Functions

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A. March 12, 1965)

1. For a positive harmonic function u on a Riemann surface R, we denote by $\mathfrak{B}u$ the positive harmonic function on R defined by $(\mathfrak{B}u)(p) = \sup (v(p); u \ge v, v \in HB(R))$

for p in R. After Parreau we say that u is quasi-bounded if $\mathfrak{B}u=u$. In this note we shall give a condition for a positive harmonic function to be quasi-bounded by using the rate of diminishing of harmonic measures of level curves of the harmonic function. For the aim, we set

$$\mathfrak{L}(u; a) = (p \in R; u(p) = a)$$

for any positive number a. This is the a-level curve of u. For any closed subset F of R, we denote

$$\omega(F; p) = \inf s(p),$$

where s runs over all positive superharmonic functions on R such that $s \ge 1$ on F. This is the harmonic measure of F relative to R calculated at p. Now fix a point p in R. It is clear that $\omega(\mathfrak{L}(u;a);p) = O(1/a)$ for $a \to \infty$. If u is bounded, then $\omega(\mathfrak{L}(u;a);p) = 0$ for $a > \sup u$. This suggests us that $\omega(\mathfrak{L}(u;a);p) = o(1/a)$ might be a condition for u to be quasi-bounded. This is really the case and we shall prove

Theorem. For a positive harmonic function u on a Riemann surface R, the following three conditions are mutually equivalent:

- (1) u is quasi-bounded on R;
- (2) $\lim_{a\to\infty} a\omega(\mathfrak{L}(u;a);p)=0$ for some (and hence for any) point p in R;
- (3) $\lim_{a\to\infty} \inf_{a\to\infty} a\omega(\mathfrak{L}(u;a);p)=0$ for some (and hence for any) point p in R.
- 2. It is clear that the condition (2) implies the condition (3). Hence we have only to show the implications (1) \rightarrow (2) and (3) \rightarrow (1). In each case, we may assume that u is unbounded on R and $R \notin O_{HP}$.

Proof of the implication (1) \rightarrow (2). Fix a point p in R and let R_a be the connected component of the open set $(q \in R; u(q) < a)(a > u(p))$ containing the point p. Clearly $\bigcup_{a>u(p)} R_a = R$. Let R^* be the Wiener compactification²⁾ of R, $\Delta = R^* - R$ and μ be the harmonic measure²⁾ on

¹⁾ By positive, we mean non-negative.

²⁾ C. Constantinescu-A. Cornea: Ideale Ränder Riemannscher Flächen. Springer (1963).