48. On the Ranges of the Increasing Mappings

By Sadayuki YAMAMURO*)

(Comm. By Kinjirô KUNUGI, M.J.A., March 12, 1965)

Let E be a real Banach space, G be an open subset and \overline{G} be the closure of G. In [3] (cf. [4] and [5]), we gave the following definitions:

A mapping $f: \overline{G} \rightarrow E$ is said to be (δ_0) -increasing at $a \in G$ if f satisfies the following two conditions:

1°. $||x|| < \delta_0$ implies $a + x \in G$;

2°. $f(a+x)-f(a) \neq \alpha x$ if $\alpha \leq 0$ and $0 < ||x|| < \delta_0$.

A mapping $f: \overline{G} \rightarrow E$ is said to be $(\varepsilon_0, \delta_0)$ -uniformly increasing at $a \in G$ if f satisfies the following conditions:

1°. $||x|| < \delta_0$ implies $a + x \in G$;

3°. $||f(a+x)-f(a)-\alpha x|| \ge \varepsilon_0 ||x||$ if $\alpha \le 0$ and $0 < ||x|| < \delta_0$.

It is evident that, if a mapping $f: \overline{G} \to E$ is $(\varepsilon_0, \delta_0)$ -uniformly increasing at a, then f is (δ_0) -increasing at a.

The following two facts immediately follow from the above definitions.

Theorem 1. If a mapping $f: E \rightarrow E$ is (∞) -increasing at every point of E, then f is one-to-one.

Theorem 2. If a mapping $f: E \rightarrow E$ is (ε_0, ∞) -uniformly increasing at every point of E, then, for any non-positive number α , the range of $f(x) - \alpha x$ is closed.

A mapping $f: \overline{G} \to E$ is said to be a completely continuous vector field on \overline{G} if f is continuous on \overline{G} and the image $F(\overline{G})$ by the mapping F(x)=x-f(x) is contained in a compact set. We shall say that f is a completely continuous vector field on E if it is a completely continuous vector field on any closed ball $\overline{B}(r)=\{x\in E \mid ||x||\leq r\}$.

Then, we can prove the following

Theorem 3. Let $f: E \rightarrow E$ be a mapping. Suppose that

4°. f is (ε_0, ∞) -uniformly increasing at every point of E;

5°. f is a completely continuous vector field on E.

Then, the mapping f is onto, one-to-one and bicontinuous.

Proof. Theorem 1 and the condition 4° imply that f is one-toone. Theorem 2 and the condition 4° imply that f(E) is closed. We have only to prove that f(E) is open.

Assume that $y_0 \in f(E)$, namely, $y_0 = f(x_0)$ for some $x_0 \in E$. There

^{*)} Department of Mathematics, Institute of Advanced Studies, Australian National University.