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1o Throughout this note, we shall use the terminology due to
J. Dixmier 2 without further explanations.

Following after H. A. Dye 3, we shall introduce some funda-
mental definitions on automorphisms of an abelian von Neumann
algebra )/ with the faithful normal trace normalized by (1)=1.
A projection P in / is said to be absolutely fixed under an auto-
morphism g of /if Q-Q for each Q<-P. For the given two auto-
morphisms g and h of /, we shall denote by F(g, h) the maximal
projection in / which is absolutely fixed under gh-.

Let G be a group of C-preserving automorphisms of /;
(A)-=(A) for each A e / and g e G.

If F(g, 1)--0 for each g=/=l in G, then G is called freely ac$ing. If
is an automorphism of /, we say that depends on G if

1.u.beaF(, g)--1. We shall denote by [_G the collection of all
automorphisms of / which preserve and depend on G. We shall
call _G the full group determined by G.

In this paper, we shall give a characterization of dependence of
an automorphism with respect to the given group G in terms of the
crossed product of an abelian von Neumann algebra /.

2. At first we shall review briefly the concept of the crossed
product of an abelian von Neumann algebra by an enumerable freely
acting group G of -preservin automorphisms of /, cf. 1, 4, and
Es .

We shall denote an operator valued function defined on G by
]a g(R)A where A e / is the value of the function at g e G. Let
_q) be the set of all functions such that A--O up to a finite subset
of G. Then is a linear space with the usual operations of the
addition and the scalar multiplication, and becomes a *-algebra by
the following operations"

(.ge g@Ag)(.hea h@Bh):],e gh(R)A.B-1

and
(.e g(R)A)*:e g-@A.

For a trace in //, we shall introduce a trace in .q) by

(g(R)A)_{(A,) or g-l,
for g :/: 1,


