[Vol. 41,

65. On Automorphisms of Abelian von Neumann Algebras

By Hisashi Choda

Department of Mathematics, Osaka Gakugei University (Comm. by Kinjirô Kunugi, M.J.A., April 12, 1965)

1. Throughout this note, we shall use the terminology due to J. Dixmier [2] without further explanations.

Following after H. A. Dye [3], we shall introduce some fundamental definitions on automorphisms of an abelian von Neumann algebra \mathcal{A} with the faithful normal trace ϕ normalized by $\phi(1)=1$. A projection P in \mathcal{A} is said to be absolutely fixed under an automorphism g of \mathcal{A} if $Q^g=Q$ for each $Q \leq P$. For the given two automorphisms g and h of \mathcal{A} , we shall denote by F(g,h) the maximal projection in \mathcal{A} which is absolutely fixed under gh^{-1} .

Let G be a group of ϕ -preserving automorphisms of \mathcal{A} ; $\phi(A^g) = \phi(A)$ for each $A \in \mathcal{A}$ and $g \in G$.

If F(g,1)=0 for each $g\neq 1$ in G, then G is called *freely acting*. If α is an automorphism of \mathcal{A} , we say that α depends on G if $\text{l.u.b}_{g\in G}F(\alpha,g)=1$. We shall denote by [G] the collection of all automorphisms of \mathcal{A} which preserve ϕ and depend on G. We shall call [G] the *full group* determined by G.

In this paper, we shall give a characterization of dependence of an automorphism with respect to the given group G in terms of the crossed product of an abelian von Neumann algebra \mathcal{A} .

2. At first we shall review briefly the concept of the crossed product of an abelian von Neumann algebra by an enumerable freely acting group G of ϕ -preservin automorphisms of \mathcal{A} , cf. [1], [4], and [5].

We shall denote an operator valued function defined on G by $\sum_{g \in G} g \otimes A_g$ where $A_g \in \mathcal{A}$ is the value of the function at $g \in G$. Let \mathcal{D} be the set of all functions such that $A_g = 0$ up to a finite subset of G. Then \mathcal{D} is a linear space with the usual operations of the addition and the scalar multiplication, and becomes a *-algebra by the following operations:

$$(\sum_{g \in G} g \otimes A_g)(\sum_{h \in G} h \otimes B_h) = \sum_{g,h \in G} gh \otimes A_g B_h^{g-1}$$

and

$$(\sum_{g \in \mathcal{G}} g \otimes A_g)^* = \sum_{g \in \mathcal{G}} g^{-1} \otimes A_g^{*g}$$
.

For a trace ϕ in \mathcal{A} , we shall introduce a trace φ in \mathcal{D} by

$$\varphi(g \otimes A_g) = \begin{cases} \phi(A_g) & \text{for } g = 1, \\ 0 & \text{for } g \neq 1, \end{cases}$$