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(Comm. by Kinjir5 KUNUGI, M.J.A., April 12, 1965)

A. Edrei, P. Erdis, W. H. Gottschalk, G. A. Hedlund, and A. H.
Stone have obtained interesting results on transformations on topo-
logical spaces (for references, see 5). In this note, we shall
consider some results in a metric space over a topological semifield
(for related concepts, see 1 and 2). Let X be a metric space over
a topological semifield R. We denote the metric by p. Let f be a
continuous mapping on X, i.e. f(X) X.

We first repeat some definitions needed.
The mapping f is said to be strongly almost periodic if for a

given neighborhood U there is a positive integer k such that every
k consecutive positive integers contains an n satisfying p(x, f’(x))e
Ufor all xeX.

In the definition of strongly almost periodicity, the positive
integer k is independently taken for each point x of X. If k depends
on each point x, we need a new definition.

A point x of X is said to be almost periodic under f (by W.H.
Gottschalk 4) if for a given neighborhood U, there is a positive
integer k such that every k consecutive positive integers contains n
satisfying p(x, f’(x))e U. If each point x is almost periodic under
f, the mapping f is said to be pointwise almost periodic. For e

X, the set (J f’(x) is called the orbit of x under f and the set

[J f(x) is called the semi-orbit of x under f.
’-0

Under these concepts, we shall prove the following theorem which
is formulated by P. Erdis and A. H. Stone [3.

Theorem. Let X be a totally bounded metric space over a
topological semifield, and f a homeomorphism of X. If the set of
all negative powers is equiuniformly continuous, then f is strongly
almost periodic.

The proof is quite similar with that of Theorem III of P. ErdSs
and A. H. Stone _3J.

To prove Theorem, we take a neighborhood U of 0 in R. Then
there is a neighborhood W such that W+ Wc U. For W, there
is a neighborhood V of 0 such that p(f-(x), f-(y))e W holds for x, y
of f(x) for which p(x, y)e V. Here we can take V and W as
saturated neighborhoods and V c W.


