360 [Vol. 41,

81. On a Certain Functional-Differential Equation

By Shohei SUGIYAMA

Department of Mathematics, School of Science and Engineering Waseda University, Tokyo

(Comm. by Zyoiti SUETUNA, M. J. A., May 19, 1965)

- 1. Let \mathfrak{M} be a family of functions continuous in $I: 0 \leq t < \infty$ in the *n*-dimensional vector space. Then, we define an operator T satisfying the following conditions:
 - (i) for any x in \mathfrak{M} , Tx is also contained in \mathfrak{M} ;
- (ii) for any sequence $\{x_m\}$ $(x_m \in \mathfrak{M})$ uniformly convergent in I, $\{Tx_m\}$ is also uniformly convergent in I;
- (iii) for any scalar functions u and v continuous in I, if $u \le v$ is satisfied for $0 \le t < s$, where s is an arbitrary constant, then the inequality $Tu \le Tv$ remains valid for t = s.

Then, let us consider a functional-differential equation such that (1) $x'=f(t, x, Tx), x(0)=x_0, t \in I$.

If we choose the operator and the function f suitably, the equation (1) yields various types of equations, for example, differential equations, integro-differential equations, difference-differential equations, and so on.

In the sequel, the existence of continuous solutions of (1) in I is supposed to be established. However, we need not assume the uniqueness of solutions, so far as we are concerned with the boundedness and stability problems.²⁾

- 2. We first introduce a V-function as follows. Let V(t, x) be a function of t and x satisfying the following conditions:
 - (i) V(t, x) is continuous and non-negative in I and $|x| < \infty$;
 - (ii) V(t, x) satisfies the Lipschitz condition such that $|V(t, x) V(t, y)| \le k(t) |x y|$,

where k(t) is continuous in I;

(iii) $\lim_{|x|\to\infty} V(t,x) = \infty$ uniformly in $t\in I$.

In order to derive some results on the boundedness, it is usefull to introduce two quantities $\delta V(t, x, y)$ and DV(t, x) by setting

$$b V(t, x, y) = \overline{\lim}_{h \to 0} \frac{1}{h} (V(t+h, x+hf(t, x, y)) - V(t, x)),$$

$$DV(t, x, y) = \overline{\lim}_{h \to 0} \frac{1}{h} (V(t+h, x+hf(t, x, y)) - V(t, x)),$$

$$DV(t,z(t)) = \overline{\lim_{h \to 0}} \frac{1}{h} (V(t+h,z(t+h)) - V(t,z(t)),$$

¹⁾ This means that the operator T is continuous.

²⁾ The author's paper, in which some theorems on the existence and uniqueness of continuous solutions has been discussed, will shortly appear.