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96. On Theorems of Korovkin. II

By Ritsuo IAKAMOTO and Masahiro NAKAMURA
Department of Mathematics, Osaka Gakugei University

(Comm. by Kinjir6 KU,NU(I, M..A., June 12, 1965)

1o P. P. Korovkin [2; Th. 3 established, among many others,
the following theorem"

THEOREM 1. Let L, be a positive linear operator which maps
the space C[a, b-J of all functions continuous on the closed interval
[a, b into itself for every n-l, 2, -... If
( 1 lim Lf=f, uniformly,

is satisfied by f(t)-1, t and V, then (1) is true for every fe Ca, b.
Since several concrete operators on C[a, b are positive und linear,

Korovkin’s theorem plays fundamental role in his theory of approxi-
mation; for example, the Bernstein operator

is linear and positive on 0, 1 for every n0.
One of the proofs of Theorem 1 due to Korovkin is based on

the following theorem 2; Th. 1-] on the convergence of positive
linear functionals on C_a, b"

THSOaS 2. If a sequence {q} of positive linear functionals
on C[a, b satisfies
(2)

and

lim #(i)-i,

lim q(h)- 0,

where h(t)-(t-c), a<=cb, then
lim q( f)- f(c),

for all fe Ca, b.
2. A few years ago, Marie and Hisashi Choda proved in 1 an

abstract version of Theorem 2. To introduce their theorem, some
elementary notions on B*-algebras are required, cf. 3.

A commutative Banach algebra A is called a B*-algebra if A
has an involution x--x* which satisfies ][ xx* [[-]1 x II for all x e A.
An element of A is called positive, symbolically a>__0, if there is an
element b e A such as a-bb*. If a transformation L which maps A
into a B*-algebra B is called positive if La>=O for every a>=0. A
character of A is a homomorphism of A onto complex numbers. A
character of A determines uniquely a maximal ideal of A.


