96. On Theorems of Korovkin. II

By Ritsuo NAKAMOTO and Masahiro NAKAMURA

Department of Mathematics, Osaka Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1965)

1. P. P. Korovkin [2; Th. 3] established, among many others, the following theorem:

THEOREM 1. Let L_n be a positive linear operator which maps the space C[a, b] of all functions continuous on the closed interval [a, b] into itself for every $n=1, 2, \cdots$. If (1) $\lim_{n\to\infty} L_n f=f,$ uniformly,

is satisfied by f(t)=1, t and t^2 , then (1) is true for every $f \in C[a, b]$.

Since several concrete operators on C[a, b] are positive and linear, Korovkin's theorem plays fundamental role in his theory of approximation; for example, the Bernstein operator

$$B_n f(t) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} t^k (1-t)^{n-k}$$

is linear and positive on [0, 1] for every n > 0.

One of the proofs of Theorem 1 due to Korovkin is based on the following theorem [2; Th. 1] on the convergence of positive linear functionals on C[a, b]:

THEOREM 2. If a sequence $\{\varphi_n\}$ of positive linear functionals on C[a, b] satisfies

$$\lim_{n\to\infty}\varphi_n(1)=1$$

and

where $h(t) = (t-c)^2$, $a \leq c \leq b$, then $\lim_{n \to \infty} \varphi_n(f) = f(c)$,

for all $f \in C[a, b]$.

2. A few years ago, Marie and Hisashi Choda proved in [1] an abstract version of Theorem 2. To introduce their theorem, some elementary notions on B^* -algebras are required, cf. [3].

A commutative Banach algebra A is called a B^* -algebra if A has an involution $x \rightarrow x^*$ which satisfies $||xx^*|| = ||x||^2$ for all $x \in A$. An element of A is called *positive*, symbolically $a \ge 0$, if there is an element $b \in A$ such as $a = bb^*$. If a transformation L which maps A into a B^* -algebra B is called *positive* if $La \ge 0$ for every $a \ge 0$. A character of A is a homomorphism of A onto complex numbers. A character of A determines uniquely a maximal ideal of A.