## 123. Non-negative Integer Valued Functions on Commutative Groups. I

By R. Biggs, Morio Sasaki, and Takayuki Tamura<br>University of British Columbia, Iwate University and University of California, Davis<br>(Comm. by Kinjirô Kunugı, m.J.A., Sept. 13, 1965)

T. Tamura, one of the authors, introduced "an indexed group" which means a commutative group $G$ with a non-negative integer valued function $I(x, y)$ defined on $G \times G$ and satisfying the following conditions:
(A) $I(x, y)=I(y, x)$
(B) $I(x, y)+I(x y, z)=I(x, y z)+I(y, z)$ for any $x, y, z \in G$
(C) For any $x \in G$, there is a positive integer $m$ (depending on $x)$ such that $I\left(x^{m}, x\right)>0$.
(D) $I(e, e)=1$ where $e$ is the identity of $G$.

It was shown in [1] that $I(e, x)=1$ for all $x \in G$ for every indexed group $G$. Consequently if $G$ is periodic, condition (C) is satisfied whenever conditions (A), (B), and (D) are satisfied.

Given an indexed group $G$, there is a commutative archimedean cancellative semigroup without idempotent such that the fundamental group of which is isomorphic to the group $G$ (Theorem 4 in [1] or Exercise §4.3, 8. p. 136 in [2]).

The purpose of this paper, as one of the series, is to show how all $I$-functions on a finitely generated commutative group $G$ may be obtained.

1. The Case where $\boldsymbol{G}$ is a Finite Cyclic Group. Suppose $G$ is a cyclic group of order $n$ generated by $a$. Let $E(i, j, k)$ denote the equation obtained by setting $x, y, z$ as $a^{i}, a^{j}, a^{k}$ respectively in ( $B$ ), and let $E^{\prime}(i, j, k)$ be the equation obtained by exchanging the two sides of $E(i, j, k)$ with each other.

Lemma 1. $E(m, p, q), m>0, p, q$ integers, is expressed by equations of type $E(1, p, q)$.

Proof. If $m=1$, it is obvious. Let $m \geqq 2$, then $E(m, p, q)$ is obtained by adding $E(m-1,1, p), E^{\prime}(m-1,1, p+q), E(m-1, p+1, q)$ and $E(1, p, q)$. By induction we get this lemma.

For integers $i(\geqq 0), m, n$ we define

$$
\begin{aligned}
{[m, n]_{i} } & =\sum_{k=0}^{i-1} I\left(a, a^{m+k}\right)-\sum_{k=0}^{i-1} I\left(a, a^{n-k}\right), & & \text { if } i>0 \\
& =0 & & \text { if } i=0
\end{aligned}
$$

Adding then, $E(1,1, j), E(1,2, j), \cdots, E(1, i-1, j)$, we obtain

