113. On a Theorem of G. Pólya

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Zyoiti Suetuna, m.J.A., Sept. 13, 1965)
Let $a_{n}(n=0,1,2, \cdots)$ be a sequence of algebraic integers. In 1920 G. Pólya [2] proved that if $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function of z, then so is $\sum_{n=0}^{\infty} \alpha_{n} z^{n}$. This result has recently been generalized by D. G. Cantor [1], who showed that if $f(x)$ is a non-zero polynomial in x with arbitrary complex coefficients and if $\sum_{n=0}^{\infty} f(n) a_{n} z^{n}$ is a rational function, then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is again a rational function. In the present note we shall prove the following theorem which is a generalization of the above result due to Pólya in another direction:

Theorem. Let $a_{n}(n=0,1,2, \cdots)$ be a sequence of numbers belonging to a fixed module over the ring of rational integers with a finite basis in the field of complex numbers. If $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function, then so is also $\sum_{n=0}^{\infty} a_{n} z^{n}$.

It is quite easy to see that if the a_{n} are algebraic integers and if $\sum_{n=0}^{\infty} n a_{n} z^{n}$ is a rational function, then there exists a finite algebraic extension k of the field of rational numbers such that the ring $\mathrm{o}(k)$ of algebraic integers of k contains all of the a_{n}; and, as is well known, the ring $\mathfrak{o}(k)$ has as a module a finite basis over the ring of rational integers.

1. Lemmas. Let K_{1} be an arbitrary field of characteristic 0 and K_{2} a field containing K_{1}. We require the following two lemmas which are substantially proved in [2; pp. 4-5].

Lemma 1. Let $A(z)$ be a non-zero polynomial of $K_{1}[z]$ and write

$$
A(z)=\left(P_{1}(z)\right)^{e_{1}} \cdots\left(P_{r}(z)\right)^{e_{r}}
$$

where $P_{1}(z), \cdots, P_{r}(z)$ are distinct irreducible polynomials in $K_{1}[z]$ and e_{1}, \cdots, e_{r} are positive integers. If $B(z)$ is a polynomial of $K_{2}[z]$, then we have

$$
\frac{B(z)}{A(z)}=\sum_{j=1}^{r} \frac{B_{j}(z)}{\left(P_{j}(z)\right)^{e_{j}}}
$$

for some polynomials $B_{1}(z), \cdots, B_{r}(z)$ of $K_{2}[z]$.
Proof. Clear.
Lemma 2. Let $P(z)$ be an irreducible polynomial of $K_{1}[z]$ and $Q(z)$ be a polynomial of $K_{2}[z]$. Let e be a positive integer. Then there exist a rational function $\phi(z)$ of $K_{2}(z)$ and a polynomial $R(z)$ of $K_{2}[z]$ with $\operatorname{deg} R(z)<\operatorname{deg} P(z)$ such that

