113. On a Theorem of G. Pólya

By Saburô UCHIYAMA

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Zyoiti SUETUNA, M.J.A., Sept. 13, 1965)

Let a_n $(n=0, 1, 2, \cdots)$ be a sequence of algebraic integers. In 1920 G. Pólya [2] proved that if $\sum_{n=0}^{\infty} na_n z^n$ is a rational function of z, then so is $\sum_{n=0}^{\infty} a_n z^n$. This result has recently been generalized by D. G. Cantor [1], who showed that if f(x) is a non-zero polynomial in x with arbitrary complex coefficients and if $\sum_{n=0}^{\infty} f(n)a_n z^n$ is a rational function, then $\sum_{n=0}^{\infty} a_n z^n$ is again a rational function. In the present note we shall prove the following theorem which is a generalization of the above result due to Pólya in another direction:

Theorem. Let a_n $(n=0, 1, 2, \cdots)$ be a sequence of numbers belonging to a fixed module over the ring of rational integers with a finite basis in the field of complex numbers. If $\sum_{n=0}^{\infty} na_n z^n$ is a rational function, then so is also $\sum_{n=0}^{\infty} a_n z^n$.

It is quite easy to see that if the a_n are algebraic integers and if $\sum_{n=0}^{\infty} na_n z^n$ is a rational function, then there exists a finite algebraic extension k of the field of rational numbers such that the ring o(k)of algebraic integers of k contains all of the a_n ; and, as is well known, the ring o(k) has as a module a finite basis over the ring of rational integers.

1. Lemmas. Let K_1 be an arbitrary field of characteristic 0 and K_2 a field containing K_1 . We require the following two lemmas which are substantially proved in [2; pp. 4-5].

Lemma 1. Let A(z) be a non-zero polynomial of $K_1[z]$ and write

$$A(z) = (P_1(z))^{e_1} \cdots (P_r(z))^{e_r},$$

where $P_1(z), \dots, P_r(z)$ are distinct irreducible polynomials in $K_1[z]$ and e_1, \dots, e_r are positive integers. If B(z) is a polynomial of $K_2[z]$, then we have

$$rac{B(z)}{A(z)} \!=\! \sum_{j=1}^r \! rac{B_j(z)}{(P_j(z))^{e_j}}$$

for some polynomials $B_1(z), \dots, B_r(z)$ of $K_2[z]$.

Proof. Clear.

Lemma 2. Let P(z) be an irreducible polynomial of $K_1[z]$ and Q(z) be a polynomial of $K_2[z]$. Let e be a positive integer. Then there exist a rational function $\phi(z)$ of $K_2(z)$ and a polynomial R(z) of $K_2[z]$ with deg R(z) < deg P(z) such that