111. On the Rate of Growth of Blaschke Products in the Unit Circle

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Sept. 13, 1965)

1. Introduction. Let us put

$$B(z) = \prod_{n=1}^{+\infty} b(z, a_n),$$

where $b(z, a) = |a|/a \cdot (a-z)/(1-\overline{a}z)$, $S = \sum_{n=1}^{+\infty} (1-|a_n|) < +\infty$. Then we can find the sequence $\{r_n\}^{*}$ such that

(1.1)
$$(1) \quad \begin{array}{c} (1) \quad 1 = r_1 > r_2 > r_3 \cdots \to 0, \\ (2) \quad \sum_{n=1}^{+\infty} 1/r_n^2 \cdot (1 - |a_n|) < +\infty. \end{array}$$

For the sake of convenience, we introduce some notations:

- $(1) \quad D(e^{i\varphi}, \vartheta) = \{z; |\arg(1 ze^{-i\varphi})| \leq \vartheta < \pi/2, |z e^{i\varphi}| \leq \cos \vartheta \}.$
- (2) $D(e^{i\varphi}, r_1, r_2) = (|z r_1 e^{i\varphi}| \le 1 r_1) \cap (|z r_2 e^{i\varphi}| \ge 1 r_2),$ (0 < r_1 < r_2 < 1).
- (3) $\mathscr{D} = \bigcap_{n} \{z; \rho(z, a_n) \ge R_n\}$, where $\rho(a, b)$: The non-Euclidean hyperbolic distance between a and b, $R_n = \tanh^{-1} r_n$ $(n=1, 2, \cdots)$.
- $(4) \quad S(\varepsilon) = \sum_{|a_n e^{i\varphi}| < \varepsilon} 1/r_n^2 \cdot (1 |a_n|).$

Then we can state our theorems as follows: Theorem 1.

(1.2)
$$\lim_{\substack{||z| \to 1 \\ z \in C}} (1 - |z|) \log |1/B(z)| = 0.$$

As its immediate consequences, we get following: Corollary 1.

(1.3) $\lim |z-e^{i\varphi}| \cdot \log |1/B(z)| = 0$ uniformly as $z \to e^{i\varphi}$ inside $D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$. Corollary 2. If there exists no $\{a_n\}$ in the sector S: $\alpha \leq \arg(1-ze^{-i\varphi}) \leq \beta(-\pi/2 < \alpha < \beta < \pi/2)$, then $\lim |z-e^{i\varphi}| \cdot \log |1/B(z)| = 0$ uniformly as $z \to e^{i\varphi}$ inside the subsector of S.

As an interesting application of Corollary 2, we can establish

Theorem 2. If the sequence $\{a_n\}$ lies on the chord $L: \arg(1-ze^{-i\varphi})=\vartheta \ (|\vartheta|<\pi/2)$, then L is Julia-line for $f(z)=B(z)\cdot \exp\{\alpha\cdot(e^{i\varphi}+z)/(e^{i\varphi}-z)\}\ (\alpha>0)$.

Under additional conditions, we can prove more precise theorems than Theorem 1:

Theorem 3. If $\overline{\lim} S(\varepsilon)/\varepsilon^2 < +\infty$, then $\underline{\lim} |B(z)| > 0$ as $z \to e^{i\varphi}$ inside $\mathcal{D} \cap (D(e^{i\varphi}, \vartheta) \cup D(e^{i\varphi}, r_1, r_2))$.

^{*)} Vide lemma 1.