110. On Lacunary Trigonornetric Series

By Shigeru Takahashi
Department of Mathematics, Kanazawa University, Kanazawa, Japan
(Comm. by Zyoiti Suetuna, m.J.A., Sept. 13, 1965)

§ 1. Introduction. In [2] R. Salem and A. Zygmund proved the

Theorem. Let $S_{N}(t)=\sum_{k=1}^{N} a_{k} \cos 2 \pi n_{k}\left(t+\alpha_{k}\right)$ and $A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2}$, where $\left\{n_{k}\right\}$ is a sequence of positive integers satisfying

$$
\begin{equation*}
n_{k+1}>n_{k}(1+c), \quad \text { for some } c>0 \tag{1.1}
\end{equation*}
$$ and $\left\{a_{k}\right\}$ an arbitrary sequence of real numbers for which

$$
A_{N} \rightarrow+\infty \text {, and }\left|a_{N}\right|=o\left(A_{N}\right), \quad \text { as } N \rightarrow+\infty
$$

Then we have, for any set $E \subset[0,1]$ of positive measure and x, (1.2) $\lim _{N \rightarrow \infty}\left|\left\{t ; t \in E, S_{N}(t) \leq x A_{N}\right\}\right| /|E|=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u .{ }^{*}$

Recently, it is proved that the lacunarity condition (1.1) can be relaxed in some cases (c.f. [1] and [4]). But in [1] it is pointed out that to every constant $c>0$, there exists a sequence $\left\{n_{k}\right\}$ for which $n_{k+1}>n_{k}\left(1+c k^{-1 / 2}\right)$ but (1.2) is not true for $a_{k}=1$ and $E=[0,1]$.

The purpose of the present note is to prove the following
Theorem. Let $S_{N}(t)=\sum_{k=1}^{N} a_{k} \cos 2 \pi n_{k}\left(t+\alpha_{k}\right)$ and $A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2}$, where $\left\{n_{k}\right\}$ is a sequence of positive integers satisfying (1.3) $\quad n_{k+1}>n_{k}\left(1+c k^{-\alpha}\right)$, for some $c>0$ and $0 \leq \alpha \leq 1 / 2$, and $\left\{a_{k}\right\}$ an arbitrary sequence of real numbers for which
(1.4) $\quad A_{N} \rightarrow+\infty$, and $\left|a_{N}\right|=o\left(A_{N} N^{-\alpha}\right)$, as $N \rightarrow+\infty$. Then (1.2) holds, for any set $E \subset[0,1]$ of positive measure.

From the above theorem we can easily obtain the Corollary. Under the conditions (1.3) and (1.4), we have

$$
\begin{equation*}
\limsup _{N \rightarrow+\infty}\left|\sum_{k=1}^{N} a_{k} \cos 2 \pi n_{k}\left(t+\alpha_{k}\right)\right|=+\infty, \quad \text { a.e. in } t \tag{1.5}
\end{equation*}
$$

For the proof of our theorem we use the following lemma which is a special case of Theorem 1 in [3].

Lemma 1. Let $S_{N}(t)=\sum_{k=1}^{N} a_{k} \cos 2 \pi k\left(t+\alpha_{k}\right)$ and $A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2}$, then we put $\Delta_{k}(t)=S_{2^{k+1}}(t)-S_{2^{k}}(t)$ and $B_{N}=A_{2^{N+1}}$. Suppose if

$$
B_{N} \rightarrow+\infty, \text { and } \sup _{t}\left|\Delta_{N}(t)\right|=o\left(B_{N}\right)^{2 N}, \quad \text { as } N \rightarrow+\infty
$$

and

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|B_{N}^{-2} \sum_{K=1}^{N}\left\{\Delta_{K}^{2}(t)+2 \Delta_{K}(t) \Delta_{K+1}(t)\right\}-1\right| d t=0,
$$

then (1.2) holds, for any set $E \subset[0,1]$ of positive measure.
*) $|E|$ denotes the Lebesgue measure of the measurable set E.

