110. On Lacunary Trigonometric Series

By Shigeru TAKAHASHI

Department of Mathematics, Kanazawa University, Kanazawa, Japan (Comm. by Zyoiti Suetuna, M.J.A., Sept. 13, 1965)

§1. Introduction. In [2] R. Salem and A. Zygmund proved the

Theorem. Let $S_{\scriptscriptstyle N}(t)\!=\!\sum\limits_{k=1}^{\scriptscriptstyle N}a_k\cos2\pi n_k(t\!+\!\alpha_k)$ and $A_{\scriptscriptstyle N}\!=\!(2^{-1}\!\sum\limits_{k=1}^{\scriptscriptstyle N}a_k^2)^{1/2}$, where $\{n_k\}$ is a sequence of positive integers satisfying $n_{k+1}\!>\!n_k(1\!+\!c)$, for some $c\!>\!0$,

and $\{a_k\}$ an arbitrary sequence of real numbers for which

$$A_{\scriptscriptstyle N}\!\!\to\!+\infty$$
, and $\mid a_{\scriptscriptstyle N}\mid=o(A_{\scriptscriptstyle N})$, as $N\!\!\to\!+\infty$

Then we have, for any set $E \subset [0, 1]$ of positive measure and x,

$$(1.2) \quad \lim_{N\to\infty} |\{t; \ t\in E, \ S_N(t) \leq xA_N\}| / |E| = (2\pi)^{-1/2} \int_{-\infty}^x \exp(-u^2/2) du.^*)$$

Recently, it is proved that the lacunarity condition (1.1) can be relaxed in some cases (c.f. [1] and [4]). But in [1] it is pointed out that to every constant c>0, there exists a sequence $\{n_k\}$ for which $n_{k+1}>n_k(1+ck^{-1/2})$ but (1.2) is not true for $a_k=1$ and E=[0,1].

The purpose of the present note is to prove the following

Theorem. Let $S_N(t) = \sum\limits_{k=1}^N a_k \cos 2\pi n_k (t+\alpha_k)$ and $A_N = (2^{-1}\sum\limits_{k=1}^N \alpha_k^2)^{1/2}$, where $\{n_k\}$ is a sequence of positive integers satisfying (1.3) $n_{k+1} > n_k (1+ck^{-\alpha})$, for some c>0 and $0 \le \alpha \le 1/2$, and $\{a_k\}$ an arbitrary sequence of real numbers for which

$$(1.4) \hspace{1cm} A_N \longrightarrow + \infty, \hspace{1cm} and \hspace{1cm} \mid a_N \mid = o(A_N N^{-\alpha}), \hspace{1cm} as \hspace{1cm} N \longrightarrow + \infty.$$

Then (1.2) holds, for any set $E\subset [0, 1]$ of positive measure.

From the above theorem we can easily obtain the Corollary. Under the conditions (1.3) and (1.4), we have

(1.5)
$$\limsup_{N\to +\infty} |\sum_{k=1}^N a_k \cos 2\pi n_k (t+\alpha_k)| = +\infty, \qquad \text{a.e. } in \ t.$$

For the proof of our theorem we use the following lemma which is a special case of Theorem 1 in [3].

and $\lim_{N\to\infty} \int_0^1 \! |B_N^{-2} \sum_{K=1}^N \{ \varDelta_K^2(t) \! + \! 2 \varDelta_K(t) \varDelta_{K+1}(t) \} \! - \! 1 \mid dt \! = \! 0,$

then (1.2) holds, for any set $E \subset [0, 1]$ of positive measure.

^{*)} |E| denotes the Lebesgue measure of the measurable set E.