153. Some Applications of the FunctionalRepresentations of Normal Operators in Hilbert Spaces. XVII

By Sakuji Inoue

Faculty of Education, Kumamoto University (Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)

Let $T(\lambda)$ be the function treated in Theorems 43, 44, and 45 of the preceding paper. Namely $T(\lambda)$ has as its singularity every point belonging to the bounded set $\overline{\left\{\lambda_{\nu}\right\}} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]$ where the denumerably infinite set $\left\{\lambda_{\nu}\right\}$ is everywhere dense on a closed or an open rectifiable Jordan curve Γ and satisfies the condition that for any small positive ε the circle $|\lambda|=\sup \left|\lambda_{\nu}\right|+\varepsilon$ contains the mutually disjoint closed sets $\Gamma, D_{1}, D_{2}, \cdots, \nu_{n-1}$, and D_{n} inside itself [cf. Proc. Japan Acad., 40 (7), 492-497 (1964)]. In this paper we are mainly concerned with the distribution of c-points of the sum of the first and second principal parts of $T(\lambda)$ in the domain $\left\{\lambda: \sup _{\nu}\left|\lambda_{\nu}\right|<|\lambda|<\infty\right\}$, on the assumption that c is an arbitrary finite complex number.

Theorem 46. Let $\chi(\lambda)$ be the sum of the first and second principal parts of the above-mentioned function $T(\lambda)$; let $\sigma=\sup \left|\lambda_{\nu}\right|$; let c be an arbitrarily given finite non-zero complex number; let $n(\rho, c)$, $(\sigma<\rho<\infty)$, be the number of all the c-points, with due count of multiplicity, of $\chi(\lambda)$ in the domain $\Delta_{\rho}\{\lambda: \rho<|\lambda|<\infty\}$; let

$$
N(\rho, c)=\int_{\rho}^{\infty} \frac{n(r, c)}{r} d r \quad(\sigma<\rho<\infty) ;
$$

and let

$$
m(\rho, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\left[\chi\left(\rho e^{-i t}\right), c\right]} d t \quad(\sigma<\rho \leqq \infty)
$$

where

$$
\left[\chi\left(\rho e^{-i t}\right), c\right]=\frac{\left|\chi\left(\rho e^{-i t}\right)-c\right|}{\sqrt{\left(1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}\right)\left(1+|c|^{2}\right)}} .
$$

Then the equality

$$
N(\rho, c)+m(\rho, c)-m(\infty, c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{1+\left|\chi\left(\rho e^{-i t}\right)\right|^{2}} d t
$$

holds for every ρ with $\sigma<\rho<\infty$; and in addition, $N(\rho, c), m(\rho, c)-$ $m(\infty, c)$, and the right-hand definite integral tend to 0 as ρ becomes infinite.

Proof. If we now consider the function $f(\lambda) \equiv \chi\left(\frac{\rho^{2}}{\lambda}\right),(\sigma<\rho<\infty)$, of a complex variable λ, then $f(\lambda)$ is regular in the domain $D\{\lambda: 0 \leqq$

