153. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XVII

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

Let $T(\lambda)$ be the function treated in Theorems 43, 44, and 45 of the preceding paper. Namely $T(\lambda)$ has as its singularity every point belonging to the bounded set $\overline{\{\lambda_{\nu}\}} \cup \begin{bmatrix} \ddots \\ \bigcup \\ j=1 \end{bmatrix}$ where the denumerably infinite set $\{\lambda_{\nu}\}$ is everywhere dense on a closed or an open rectifiable Jordan curve Γ and satisfies the condition that for any small positive ε the circle $|\lambda| = \sup |\lambda_{\nu}| + \varepsilon$ contains the mutually disjoint closed sets Γ , D_1 , D_2 , \cdots , D_{n-1} , and D_n inside itself [cf. Proc. Japan Acad., 40 (7), 492-497 (1964)]. In this paper we are mainly concerned with the distribution of *c*-points of the sum of the first and second principal parts of $T(\lambda)$ in the domain $\{\lambda: \sup_{\nu} |\lambda_{\nu}| < |\lambda| < \infty\}$, on the assumption that *c* is an arbitrary finite complex number.

Theorem 46. Let $\chi(\lambda)$ be the sum of the first and second principal parts of the above-mentioned function $T(\lambda)$; let $\sigma = \sup |\lambda_{\nu}|$; let c be an arbitrarily given finite non-zero complex number; let $n(\rho, c)$, $(\sigma < \rho < \infty)$, be the number of all the *c*-points, with due count of multiplicity, of $\chi(\lambda)$ in the domain $\Delta_{\rho}\{\lambda: \rho < |\lambda| < \infty\}$; let

$$N(\rho, c) = \int_{\rho}^{\infty} \frac{n(r, c)}{r} dr \qquad (\sigma < \rho < \infty);$$

and let

$$m(
ho, c) = rac{1}{2\pi} \int_{0}^{2\pi} \log rac{1}{\lfloor \chi(
ho e^{-it}), c
brack} dt \qquad (\sigma <
ho \leq \infty),$$

where

$$[\chi(\rho e^{-it}), c] = \frac{|\chi(\rho e^{-it}) - c|}{\sqrt{(1 + |\chi(\rho e^{-it})|^2)(1 + |c|^2)}}$$

Then the equality

$$N(\rho, c) + m(\rho, c) - m(\infty, c) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \sqrt{1 + |\chi(\rho e^{-it})|^2} dt$$

holds for every ρ with $\sigma < \rho < \infty$; and in addition, $N(\rho, c)$, $m(\rho, c) - m(\infty, c)$, and the right-hand definite integral tend to 0 as ρ becomes infinite.

Proof. If we now consider the function $f(\lambda) \equiv \chi\left(\frac{\rho^2}{\lambda}\right)$, $(\sigma < \rho < \infty)$, of a complex variable λ , then $f(\lambda)$ is regular in the domain $D\{\lambda: 0 \leq \beta < \infty\}$