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Let T(2) be the function treated in Theorems 43, 44, and 45 of
the preceding paper. Namely T() has as its singularity every point

belonging to the bounded set {2}UIj=DjI where the denumerably
infinite set {} is everywhere dense on a closed or an open rectifiable
Jordan curve F and satisfies the condition that for any small positive
e the circle [1 sup[ +e contains the mutually disjoint closed
sets F, D, D., ..-, D_, and D inside itself [cf. Proc. Japan Acad.,
40 (7), 492-497 (1964)_. In this paper we are mainly concerned
with the distribution of c-points of the sum of the first and second
principal parts of T() in the domain {" sup l2 I[1}, on the
assumption that c is an arbitrary finite complex number.

Theorem 46. Let Z() be the sum of the first and second princi-
pal parts of the above-mentioned function T(2); let a-supl I; let
c be an arbitrarily given finite non-zero complex number; let n(p, c),
(ap), be the number of all the c-points, with due count o
multiplicity, of Z(2) in the domain A,{" p I1 }; let

);

and let

where

i I log dt (a < p< ),re(p, c) - EZ(pe-t), c

EZ(pe-’), e- z(pe-’)-cl
V(Z+ z(pe-’) c

Then the equality
1 I’o" ]OV/ 1+ Z(pe-t) I’N(p, c)+ re(p, c)-m(, c)=--

holds or every p with ap; and in addition, N(p, c), re(p, c)-
m(, c), and the right-hand definite integral tend to 0 as p becomes
infinite.

Proof. If we now consider the function f()--z(P),
of a complex variable 2, then f() is regular in the domain D{" 0=<


