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3. Now, let us prove the following main theorem.
Theorem. If f(x) is .q)-integrable in I0=[a, b_q, there exists a

measure such that f(x) has a indefinite (E.R. u)-integral, (E.R. u)

f(t)dt, and (E.R. ) f(t)d-(.) f()dt or all e I0.
Proof. We may clearly assume that f(x)=0 for all x e C(Io). If

the function f(x) is summable on I0, we have (E.R. ) f(t)dt-
f()dt-(.q)) f(t)dt or every measure which ulfils condition 1")

and 2*) [i].
Next, we shall consider the case in which f() is not summable.

Let f() be a function which is .q)-integrable but not summable on
I0. Then, there exists, by the lemma, a non-decreasing sequence of

closed sets {F} such that (i) U F-/0, (ii)f(x) is summable on F,

(iii) IF(I)-I f(x)dxl<_2- for every interval IC lo, (1)

(iv) 3.[F(J{)[ _< 2-’ (2)

for the sequence of intervals {J} contiguous to the closed set which
consists of all points of F and end points of I0.

Since f(z)is by hypothesis, not summable, we may assume that

If(x) _> 1, 2,d 2- l- 3
FI--Fl--

(we regard F0 as empty). (3)
On account of this and summability of f() on F, we find, for

every l, a measurable set HcF such that f()>_f(x’) for every
x e H and ’ e F-H, and

If(x) dx-2-.
Writing ,= mes H,, we see at once that

mes (F, F_)> ,, (5)
,>,+, (6)

mes (E)<, implies I If(x) dx2-’ (7)

for every measurable set EcF,.
Let h, and k, be integers such that

(h- 1)3, < rues (F, F, 1) < h,3,, (8)
2’-,+<,<2+ (9)


