150. On Indefinite (E. R.)-Integrals. II

By Kumiko FUJITA

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

§3. Now, let us prove the following main theorem.

Theorem. If f(x) is \mathcal{D} -integrable in $I_0 = [a, b]$, there exists a measure ν such that f(x) has a indefinite (E.R. ν)-integral, (E.R. ν) $\int_a^x f(t)dt$, and (E.R. ν) $\int_a^x f(t)dt = (\mathcal{D}) \int_a^x f(t)dt$ for all $x \in I_0$. Proof. We may clearly assume that f(x) = 0 for all $x \in C(I_0)$. If

Proof. We may clearly assume that f(x)=0 for all $x \in C(I_0)$. If the function f(x) is summable on I_0 , we have (E.R. ν) $\int_a^x f(t)dt = \int_a^x f(t)dt = (\mathcal{D}) \int_a^x f(t)dt$ for every measure ν which fulfils condition 1*) and 2*) [1].

Next, we shall consider the case in which f(x) is not summable. Let f(x) be a function which is \mathcal{D} -integrable but not summable on I_0 . Then, there exists, by the lemma, a non-decreasing sequence of closed sets $\{F_l\}$ such that (i) $\bigcup_{l=1}^{\infty} F_l = I_0$, (ii) f(x) is summable on F_l ,

(iii)
$$|F(I) - \int_{F_l \cap I} f(x) dx| \le 2^{-l}$$
 for every interval $I \subset I_0$, (1)

(iv)
$$\sum_{j=1}^{\infty} |F(J_{i}^{j})| \le 2^{-i}$$
 (2)

for the sequence of intervals $\{J_i^j\}$ contiguous to the closed set which consists of all points of F_n and end points of I_0 .

Since f(x) is by hypothesis, not summable, we may assume that

$$\int_{F_{l}-F_{l-1}} |f(x)| \, dx \ge 2^{-l} \qquad l=1, 2, 3 \cdots$$
(we regard F_0 as empty). (3)

On account of this and summability of f(x) on F_i , we find, for every l, a measurable set $H_i \subset F_i$ such that $f(x) \ge f(x')$ for every $x \in H_i$ and $x' \in F_i - H_i$, and

$$\int_{H_l} |f(x)| \, dx = 2^{-l}.$$
 (4)

Writing $\delta_l = \text{mes } H_l$, we see at once that $\max (F_l - F_{l-1}) > \delta_l$,

$$\delta_l > \delta_{l+1},$$
 (6)

$$\operatorname{mes}(E) < \delta_{i} \text{ implies } \int_{E} |f(x)| \, dx \le 2^{-i}$$
(7)

for every measurable set $E \subset F_i$.

Let h_i and k_i be integers such that

$$(h_l - 1)\delta_l < \max(F_l - F_l - 1) < h_l\delta_l,$$
 (8)

$$2^{k_l-1}\delta_{l+1} < \delta_l < 2^{k_l}\delta_{l+1} .$$
(9)

(5)