150. On Indefinite (E. R.)-Integrals. II

By Kumiko Fujita

(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)
§3. Now, let us prove the following main theorem.
Theorem. If $f(x)$ is \mathscr{D}-integrable in $I_{0}=[a, b]$, there exists a measure ν such that $f(x)$ has a indefinite (E.R. ν)-integral, (E.R. ν) $\int_{a}^{x} f(t) d t$, and (E.R. $\left.\nu\right) \int_{a}^{x} f(t) d t=(\mathscr{D}) \int_{a}^{x} f(t) d t$ for all $x \in I_{0}$.

Proof. We may clearly assume that $f(x)=0$ for all $x \in C\left(I_{0}\right)$. If the function $f(x)$ is summable on I_{0}, we have (E.R. ע) $\int_{a}^{x} f(t) d t=$ $\int_{a}^{x} f(t) d t=(\mathscr{D}) \int_{a}^{x} f(t) d t$ for every measure ν which fulfils condition $\left.1^{*}\right)$ and 2*) [1].

Next, we shall consider the case in which $f(x)$ is not summable. Let $f(x)$ be a function which is \mathscr{D}-integrable but not summable on I_{0}. Then, there exists, by the lemma, a non-decreasing sequence of closed sets $\left\{F_{l}\right\}$ such that (i) $\bigcup_{l=1}^{\infty} F_{l}=I_{0}$, (ii) $f(x)$ is summable on F_{l},
(iii) $\left|F(I)-\int_{F_{l} \cap I} f(x) d x\right| \leq 2^{-l}$ for every interval $I \subset I_{0}$,
(iv) $\sum_{j=1}^{\infty}\left|F\left(J_{l}^{j}\right)\right| \leq 2^{-l}$
for the sequence of intervals $\left\{J_{l}^{j}\right\}$ contiguous to the closed set which consists of all points of F_{n} and end points of I_{0}.

Since $f(x)$ is by hypothesis, not summable, we may assume that

$$
\int_{F_{l-F_{l-1}}}|f(x)| d x \geq 2^{-l} \quad l=1,2,3 \ldots
$$

$$
\begin{equation*}
\text { (we regard } F_{0} \text { as empty). } \tag{3}
\end{equation*}
$$

On account of this and summability of $f(x)$ on F_{l}, we find, for every l, a measurable set $H_{l} \subset F_{l}$ such that $f(x) \geq f\left(x^{\prime}\right)$ for every $x \in H_{l}$ and $x^{\prime} \in F_{l}-H_{l}$, and

$$
\begin{equation*}
\int_{H_{l}}|f(x)| d x=2^{-l} \tag{4}
\end{equation*}
$$

Writing $\delta_{l}=\operatorname{mes} H_{l}$, we see at once that

$$
\begin{align*}
& \operatorname{mes}\left(F_{l}-F_{l-1}\right)>\delta_{l}, \tag{5}\\
& \delta_{l}>\delta_{l+1}, \tag{6}\\
& \operatorname{mes}(E)<\delta_{l} \text { implies } \int_{E}|f(x)| d x \leq 2^{-l} \tag{7}
\end{align*}
$$

for every measurable set $E \subset F_{l}$.
Let h_{l} and k_{l} be integers such that

$$
\begin{gather*}
\left(h_{l}-1\right) \delta_{l}<\operatorname{mes}\left(F_{l}-F_{l}-1\right)<h_{l} \delta_{l}, \tag{8}\\
2^{k_{l}{ }^{-1}} \delta_{l+1}<\delta_{l}<2^{k} \delta_{l+1} . \tag{9}
\end{gather*}
$$

