149. On Indefinite (E.R.)-Integrals. I

By Kumiko FUJITA

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

§1. I.A. Vinogrdova [1] constructed a function f(x) such that (i) f(x) is \mathcal{D} -integrable [2] on [0, 1], (ii) f(x) has a continuous indefinite A-integral, $A(x)=(A)\int_{0}^{x}f(t)dt$ [3], (iii) $A(x)\neq(\mathcal{D})\int_{0}^{x}f(t)dt$ $(x \in P, \text{ mes } P>0)$. On the other hand I. Amemiya and T. Ando [4] proved that A-integral is equivalent to (E.R.) integral for Lebesgue measure [5].

In the paper "On indefinite (E.R.)-integrals. II", we shall show that, for every function f(x) which is \mathcal{D} -integrable on $I_0 = [a, b]$, there exists a measure ν such that f(x) has a indefinite (E.R. ν)integral, (E.R. ν) $\int_a^x f(t)dt$ [6], and (E.R. ν) $\int_a^x f(t)dt = (\mathcal{D})\int_a^x f(t)dt$ for all $x \in I_0$.

For this purpose, first we shall generalize (see the Lemma of § 2) the theorem which has been proved by S. Nakanishi (formerly S. Enomoto) [7].

Nakanishi's theorem. Let f(x) be a function which is \mathcal{D}^* integrable [8] on $I_0 = [a, b]$ and let $F(I) = (\mathcal{D}^*) \int_I f(x) dx$. Then, for every sequence $\{\varepsilon_n\}, \varepsilon_n \downarrow 0$, there exists a non-decreasing sequence of closed sets such that (i) $\bigcup_{n=1}^{\infty} F_n = I_0$, (ii) f(x) is summable on every F_n , (iii) the condition, $I_i \cap F_n \neq \phi$ for all *i*, implies that

$$\left|\sum_{i=1}^{i_0} F(I_i) - \sum_{i=1}^{i_0} (L) \int_{I_i \cap F_n} f(x) dx\right| < \varepsilon_n$$

for every finite family $\{I_i: i=1 \cdots i_0\}$ of non-overlapping intervals contained in I_0 .

§ 2. For \mathcal{D} -integral, we shall prove the following lemma which may be regarded as a generalization of Nakanishi's theorem.

Lemma. Let f(x) be a function which is \mathcal{D} -integrable on $I_0 = [a, b]$ and let $F(I) = (\mathcal{D}) \int_a^x f(t) dt$. Then, for every sequence $\{\varepsilon_n\}, \varepsilon_n \downarrow 0$, there exists a non-decreasing sequence of closed sets $\{F_n\}$ such that (i) $\bigcup_{n=1}^{\infty} F_n = I_0$, (ii) f(x) is summable on every F_n , (iii) $\left| F(I) - \int_{F_n \cap I} f(x) dx \right| \leq \varepsilon_n$ for every interval $I \subset I_0$, (iv) $\sum_{i=1}^{\infty} |F(I_n^i)| \leq \varepsilon_n$ for the sequence of intervals contiguous to the closed set which consists of all points of F_n and end points of I_0 .

Proof. It is enough to show that every function of $\mathcal{L}_{\alpha}(I_0)$,