No. 8]

148. Semigroups with a Maximal Homomorphic Image having Zero*)

By R. J. PLEMMONS and Takayuki TAMURA Maryland, U.S.A., and University of California, Davis (Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1965)

Let S be a semigroup and suppose that S is homomorphic onto a semigroup S' with zero. Then S' is called a Z-homomorphic image of S. A Z-homomorphic image S_0 of S is called a maximal Z-homomorphic image of S if any Z-homomorphic image S' of S is a homomorphic image of S_0 . An ideal T of a semigroup S is called a minimal ideal if it does not properly contain an ideal of S. Of course, a minimal ideal is unique if it exists. If S has a minimal ideal, S has a maximal Z-homomorphic image, but this converse is not true as Example 2 shows. This paper gives a necessary and sufficient condition for a semigroup to have a maximal Z-homomorphic image.

Let I be an ideal of a semigroup S. Then S/I denotes the Rees factor semigroup. The following lemmas are fundamental (cf. $\lceil 1 \rceil$).

Lemma 1. Let I_1 and I_2 be ideals. If $I_1 \subseteq I_2$ then S/I_1 is homomorphic onto S/I_2 .

Lemma 2. Let S' be any Z-homomorphic image of a semigroup S. Then there exists an ideal I of S such that S/I is homomorphic onto S'.

Lemma 3. If $I_2 \subset I_1$ and if S/I_1 is homomorphic onto S/I_2 then there is an ideal I_3 of S such that $I_1 \subset I_3$ and S/I_3 is homomorphic onto S/I_1 .

Let $\mathfrak S$ be the family of all ideals of a semigroup S. Hereafter, we shall call a subfamily of $\mathfrak S$ a family of ideals.

Theorem 1. A semigroup S has a maximal Z-homomorphic image if and only if there is a non-empty family \mathcal{F} of ideals such that the following conditions are satisfied.

- (1.1) If $I_{\xi} \in \mathcal{F}$ and $I_{\eta} \in \mathfrak{S}$ such that $I_{\eta} \subseteq I_{\xi}$ then $I_{\eta} \in \mathcal{F}$.
- (1.2) If I_{ε} , $I_{\eta} \in \mathcal{F}$, and $I_{\eta} \subseteq I_{\varepsilon}$, then S/I_{ε} is homomorphic onto S/I_{η} .

Proof. Necessity of (1.1) and (1.2): Suppose that S has a maximal Z-homomorphic image S_0 . By Lemma 2, we may assume that $S_0 = S/I_0$ where I_0 is an ideal of S. \mathcal{F} is defined to be the system

 $^{^{*)}}$ The abstract of this paper was partly announced in [3] by one of the authors.