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The purpose of the present note is to prove some mapping
theorems for the numerical range of a linear operator, somewhat
analogous to the spectral mapping theorem. Because of the peculi-
arity that the numerical range is always convex, the theorems are
rather restricted in validity compared with the spectral mapping
theorem.

In what follows we mean by an operator A a bounded linear
operator in a Hilbert space H with domain H. The numerical range
and the spectrum of A are denoted by W(A)and S(A), respectively.
It is well known that S(A)c W(A) denotes the closure) and that

W(A) is the closed convex hull of S(A) if A is normal.
Also we need the notion of the convex kernel K of a non-empty

set E in the complex plane; K is the set of all points z such that
E is star-shaped relative to z. It is known) that K is a convex
subset of E, K--E if E is convex, and that K is compact if E is.

Theorem 1. Let f(z) be a rational function with f()-.
Let E’ be a compact convex set in the complex plane, let E-f-(E’)
.and let K be the convex kernel of E. I A is an operator with
W(A) K, then W(f(A)) E’.

Remark 2. Under the assumptions o the theorem, E’, E, and
.K are all compact and f has no poles in E. Since S(A)c W(A)c
KcE, f(A) is well defined. K may be empty, in which case the
theorem is ot no use. For K to be non-empty, it is necessary that
E be connected and contain all critical points o f(so that E’ contain
all branch points of the inverse unction f-).

Corollary 3.) If W(A) is a subset of the closed unit disk, the
same is true of W(A), n-2, 3,-.-.

For the proof o Theorem 1 and other theorems given below,
we use the following lemma, the proo of which is trivial. We
set Re A-(A/A*)/2, Im A-(A-A*)/2i, and note that ([Re Au, u)-
Re(Au, u), (Im Au, u)-Im(Au, u) or any u e H.

Lemma 4. Let A be a nonsingular operator. Then Re A >= 0 is

1) See [2 and [5.
2) This theorem is due to C. A. Berger [1. The author was told that it was

also proved by C. M. Pearcy. For n=2 it had been proved earlier by H. Fujita
(unpublished).


