140. On Lacunary Fourier Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, Tsing Hua University, Taiwan, China

(Comm. by Zyoiti Suetuna, m.J.A., Oct. 12, 1965)
Our first theorem is as follows:
Theorem 1. If the function f has the Fourier series

$$
\begin{equation*}
f(x) \sim \sum_{k=1}^{\infty}\left(a_{n_{k}} \cos n_{k} x+b_{n_{k}} \sin n_{k} x\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{k+1}-n_{k}>A n_{k}^{\beta}(A \text { constant and } 0<\beta \leqq 1) \tag{2}
\end{equation*}
$$

and if f satisfies the α-Lipschitz condition $(\alpha>0)$ at a point x_{0}, that is,

$$
\left|f\left(x_{0}+t\right)-f\left(x_{0}\right)\right| \leqq A|t|^{\alpha} \quad \text { as } \quad t \rightarrow 0,
$$

then we have

$$
a_{n_{k}}=O\left(1 / n_{k}^{\alpha \beta}\right), \quad b_{n_{k}}=O\left(1 / n_{k}^{\alpha \beta}\right) \quad(k=1,2, \cdots)
$$

This is a generalization of theorems of Kennedy [1] and Tomic [2].

Proof. a) The case $1>\alpha>0$. We can suppose that $x_{0}=0$. Let $c_{n_{k}}$ be the n_{k}-th complex Fourier coefficient of f, then

$$
c_{n_{k}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n_{k} x} d x
$$

We can suppose that ${ }^{11}$

$$
n_{k+1}-n_{k} \geqq A n_{k}^{\beta} \quad \text { and } \quad n_{k}-n_{k-1} \geqq A n_{k}^{\beta}
$$

and then we have

$$
c_{n_{k}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) T_{M_{k}}(x) e^{-i n_{k} x} d x
$$

1) If $\beta=1$, that is, $n_{k+1} / n_{k} \geqq \lambda>1$, then we can take $A=(\lambda-1) / \lambda$. In the case $0<\beta<1$, we can suppose that $n_{k+1} \geqq 2 n_{k}$. For, if not, that is, if $n_{k+1}-n_{k} \geqq A^{\prime} n_{k}^{\beta}$ for a constant A^{\prime} and $n_{k+1}>2 n_{k}$, then we insert the term $c_{n_{k}} e^{i n_{k_{k}} x}$ with $n_{k^{\prime}}=n_{k}+A^{\prime} n_{k}^{\beta}$, then

$$
n_{k^{\prime}}-n_{k}=A^{\prime} n_{k}^{\beta}, \quad n_{k+1}-n_{k^{\prime}}=\left(n_{k+1}-n_{k}\right)-A^{\prime} n_{k}^{\beta} \geqq n_{k}-A^{\prime} n_{k}^{\beta} \geqq A^{\prime} n_{k}^{\beta}
$$

for large k. If, further, $n_{k+1}>2 n_{k^{\prime}}$, then we insert also the term $c_{n_{k}{ }^{\prime \prime}} e^{i n n_{k^{\prime}} x}$ with $n_{k^{\prime \prime}}=n_{k^{\prime}}+A^{\prime}\left(n_{k^{\prime}}\right)^{\beta}$. Thus proceeding we get the sequence ($n_{k}^{(\nu)} ; \nu=1,2, \cdots, j$) such that
and

$$
n_{k}<n_{k^{\prime}}<n_{k^{\prime \prime}}<\cdots<n_{k}^{(j)}<n_{k+1}
$$

$$
\begin{gathered}
n_{k+1} \leqq 2 n_{k}^{(j)}, \quad n_{k}^{(\nu+1)} \leqq 2 n_{k}^{(\nu)}(\nu=1,2, \cdots, j-1), n_{k^{\prime}} \leqq 2 n_{k} \\
n_{k}^{(\nu+1)}-n_{k}^{(\nu)} \geqq A^{\prime}\left(n_{k}^{(\nu)}\right)^{\beta}(\nu=1,2, \cdots, j-1), n_{k+1}-n_{k}^{(j)} \geqq A^{\prime}\left(n_{k}^{(\lambda)}\right)^{\beta}, n_{k^{\prime}}-n_{k} \geqq A^{\prime} n_{k}^{\beta} .
\end{gathered}
$$

This procedure is possible for all sufficiently large k. Now, instead of f, consider the function $g(x)=f(x)+h(x)$ where $h(x) \sim \sum_{\nu, k} c_{k}^{(\nu)} e^{i n_{k}^{(\nu)} x}=\sum d_{k} e^{i m_{k} x}$. We can take $\left(c_{k}^{(\nu)}\right)$ such that h is sufficiently smooth. Then g satisfies the condition of f and the Fourier exponents $\left(m_{k}\right)$ of g satisfy (2^{\prime}) with $A=A^{\prime} / 2^{\beta}$.

