808 [Vol. 41,

177. Axiom Systems of B-algebra

By Kiyoshi Iséki

(Comm. by Kinjirô Kunugi, M.J.A., Nov. 12, 1965)

In my previous note [1], I gave an algebraic formulations of the classical propositional calculus, and I defined four algebraic systems called B, NB, BN, and NBN-algebras. In this note, we shall give other characterizations of B-algebra.

Let $\langle X, 0, *, \sim \rangle$ be an abstract algebra containing 0 as an element of a set X, where * is a binary operation and \sim is an unary operation on X. If x*y=0, then we shall denote it by $x \leq y$.

The axiom system of B-algebra is given by

$$L1 \quad x * y \leq x$$

$$L2 (x*z)*(y*z) \leq (x*y)*z,$$

$$L3 \quad x * y \leq (\sim y) * (\sim x),$$

$$L4 \quad 0 \leqslant x$$
.

If $x \le y$ and $y \le x$, then we define x = y. This axiom system is equivalent to axioms 1, 2, and

$$3' \qquad x = \sim (\sim x),$$

$$4' \qquad (\sim y) * (\sim x) \leqslant x * y,$$

as already shown in [1]. Next we shall consider the following axiom system:

$$H 1 \quad x * y \leq x$$

$$H \ 2 \ (x*y)*z \leq (x*z)*y,$$

$$H \ 3 \ (x*y)*(x*z) \leq z*y$$

$$H4 \quad x*(\sim y) \leqslant y$$

$$H 5 x*(x*(\sim y)) \leq x*y,$$

$$H6 \quad 0 \leqslant x$$
.

We first prove some lemmas from axioms $H \sim 1 \sim H = 6$.

By H2 and the definition of equality, we have

$$(1) (x*y)*z=(x*z)*y.$$

In H2, put x=y, y=y*x, $z=y*(\sim x)$, then by H5, we have

$$(2) x*(x*y) \leqslant x*(\sim y).$$

In (1), put
$$y=x$$
, $z=0$, then by H 1, we have

$$(x*x)*0 \le (x*0)*x=0$$
.

hence x * x = 0.

(3)
$$x * x = 0$$
, i.e. $x \le x$.

Let x*z=z*y=0, then by H 3, we have x*y=0. This shows the following

$$(4) x \leq y, y \leq z \text{ imply } x \leq z.$$