168. The Relation between (N, p_n) and (\overline{N}, p_n) Summability. II

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1965)

§ 1. The present note is a continuation of the previous paper by the author $\lceil 2 \rceil$. We suppose, throughout this note, 1) that

$$p_n > 0, \qquad \sum\limits_{n=0}^{\infty} p_n = \infty, \ P_n = p_0 + p_1 + \cdots + p_n, \; n = 0, 1, \cdots.$$

The Nörlund transformation (N, p_n) is defined as transforming the sequence $\{s_n\}$ into the sequence $\{t_n\}$ by means of the equation

$$(1) t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}.$$

As is well known, this transformation is regular if

$$\lim_{n\to\infty}\frac{p_n}{P_n}=0.$$

See Hardy [1], p. 64.

The discontinuous Riesz transformation (\bar{N}, p_n) is defined as transforming the sequence $\{s_n\}$ into the sequence $\{u_n\}$ by means of the equation

$$u_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}.$$

This transformation is regular (see Hardy [1], p. 57).

From (1) we see easily

$$\sum_{
u=0}^n P_{n-
u} s_
u = \sum_{
u=0}^n P_
u t_
u$$

Thus we obtain the following

Theorem 1. (N, P_n) is equivalent² to the iteration product $(\overline{N}, P_n) \cdot (N, p_n)$.

§ 2. We shall prove here the following

Theorem 2. If

(4) $\{p_n\}$ is non-increasing, and if

¹⁾ In Lemma, we need not assume $\sum_{n=0}^{\infty} p_n = \infty$ generally.

²⁾ Given two summability methods A, B, we say that A implies B if any series or sequence summable A is summable B to the same sum. We say that A and B are equivalent if A implies B and B implies A.