200. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces. XVIII

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

Theorem 48. Let $\chi(\lambda)$ and σ be the same notations as before; and let $\hat{T}(\rho)$ denote the definite integral $\frac{1}{2\pi} \int_{0}^{2\pi} \log \sqrt{1+|\chi(\rho e^{-it})|^2} dt$. Then $\hat{T}(\rho)$ is not only a monotone decreasing function of ρ but also a convex function of $\log \rho$ in the interval $\sigma < \rho < \infty$.

Proof. Let c be any finite value (inclusive of zero); let $\hat{n}(\rho, c)$ denote the number of c-points, with due count of multiplicity, of $\chi(\lambda)$ in the domain $D_{\rho}\{\lambda: \rho < |\lambda| \leq \infty\}$ with $\sigma < \rho < \infty$; let $\hat{n}(\infty, c)$ denote the number of c-points of $\chi(\lambda)$ at $\lambda = \infty$, that is, let $\hat{n}(\infty, c)$ be k or 0 according as c is 0 or not, on the assumption that the point at infinity is a zero-point of order k of $\chi(\lambda)$; let $C_{-\hat{n}(\infty,c)}$ denote C_{-k} or 1 according as c is 0 or not; and let

and

$$P(c) \!=\! \log |C_{-\hat{n}(\infty,c)}| \!-\! \left[1 \!-\! rac{\widehat{n}(\infty,c)}{k}
ight] \log \sqrt{1 \!+\! rac{1}{|c|^2}},$$

where we may and do assume that $\left[1 - \frac{\hat{n}(\infty, c)}{k}\right] \log \sqrt{1 + \frac{1}{|c|^2}}$ vanishes at c=0. Then

$$\widehat{N}(
ho,\,c)\!+\!\widehat{m}(
ho,\,c)\!+\!P(c)\!=\!egin{cases} N(
ho,\,c)\!+\!m(
ho,\,c)\!-\!m(\infty,\,c) & (c\!
eq\!0) \ \widetilde{N}(
ho,\,0)\!+\!\widetilde{m}(
ho,\,0) & (c\!=\!0), \end{cases}$$

where $N(\rho, c)$, $\tilde{N}(\rho, c)$, $m(\rho, c)$, $\tilde{m}(\rho, 0)$, and $m(\infty, c)$ are the same notations as those used in Theorems 46 and 47. Let A be the Riemann sphere, a sphere with unit diameter touching the complex λ -plane at the origin 0, and $d\omega(c)$ an areal element at a unique point on A corresponding to a point c in that λ -plane. Since, as can be found from the geometrical meaning of $[\chi(\rho e^{-it}), c]$,

$$\iint_{A} \log \frac{1}{\left[\chi(\rho e^{-it}), c\right]} d\omega(c) = Q$$

is a positive constant irrespective of ρe^{-it} and χ , it is obvious from