2. Remarks on Periodic Solutions of Linear Parabolic Differential Equations of the Second Order

By Mitsuhiko Kono
Research Institute for Mathematical Sciences, Kyoto University
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1966)

1. Introduction. Let E^{m} be the m-dimensional Euclidian space of points $x=\left(x_{1}, \cdots, x_{m}\right)$ and let Ω be an unbounded domain in E^{m} with boundary $\partial \Omega$. We set $Q=\{(x, t): x \in \Omega,-\infty<t<\infty\}$ and $\partial Q=$ $\{(x, t): x \in \partial \Omega,-\infty<t<\infty\}$. Q is an infinite cylinder in E^{m+1} whose base is Ω and whose (lateral) boundary is ∂Q. \bar{Q} denotes the closure of Q.

In this note we shall be concerned with periodic solutions of the first boundary problem in Q for linear second order parabolic equations having periodic coefficients and right members. ${ }^{1)}$

We shall briefly discuss the existence and the uniqueness of the periodic solutions which may grow exponentially as the variable x tends to infinity.

In our discussion we shall use the method similar to that employed by M. Krzyżański in regard to elliptic and parabolic boundary problems in unbounded domains [1-3].

The author of this note wishes to express his thanks to Professor M. Hukuhara for his constant counsel and kind guidance.
2. Let us consider the equation.

$$
\begin{align*}
L u & =\sum_{i, j=1}^{m} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}+c(x, t) u-\frac{\partial u}{\partial t} \tag{1}\\
& =f(x, t) \quad \text { in } Q,
\end{align*}
$$

and the boundary condition

$$
\begin{equation*}
u(x, t)=\varphi(x, t) \quad \text { on } \partial Q . \tag{2}
\end{equation*}
$$

We shall need the following assumptions:
1°. The functions $a_{i j}, b_{i}, c, f$, and φ are continuous in \bar{Q} and periodic with period $T(T>0)$.
2°. There exist positive constants A, B, and C such that

$$
\left|a_{i j}\right| \leqq A,\left|b_{i}\right| \leqq B, c \leqq-C \quad \text { in } \bar{Q}
$$

3°. The form $\sum_{i, j=1}^{m} a_{i j} \xi_{i} \xi_{j}$ is positive definite in \bar{Q}.
Definition. We shall say that a function $w(x, t)$ belongs to class $\bar{E}_{1}(K)\left(\underline{E}_{1}(K)\right)$ if there exist positive constants M_{0} and $k_{0}\left(0<k_{0}<K\right)$ such that

1) Here and throughout by a periodic function is meant one which is periodic in the time variable t.
