107. Γ -Bundles and Almost Γ -Structures

By Akira Asada

Department of Mathematics, Sinsyu University, Matumoto

(Comm. by Kinjirô KUNUGI, M.J.A., May 12, 1966)

In [2]-II, the author states that if X is a normal paracompact topological space, then we can define a sheaf of groups $H_*(n)_c$ over X and there is a 1 to 1 correspondence between the set of equivalence classes of *n*-dimensional topological microbundles over X and $H^1(X, H_*(n)_c)$. In this note, first we give the precise definition of $H_*(n)_c$ and (topological) connection of topological microbundles. Next, using $H_*(n)_c$, we define the almost Γ -structure if X is a topological manifold and give an integrability condition of almost Γ -structures.

1. Definition of the sheaf $H_*(n)_c$. We denote the semigroup of all homeomorphisms of \mathbb{R}^n into \mathbb{R}^n which fix the origin by $E_0(n)$. $E_0(n)$ is regarded to be a topological semigroup by compact open topology. We denote by X a topological space with $\{U_\alpha(x)\}$ the neighborhood basis of x. The semigroup of all continuous maps from $U_\alpha(x)$ into $E_0(n)$ is denoted by $H(U_\alpha(x), E_0(n))$. For $f \in H(U_\alpha(x), E_0(n))$, we set

$$f(y, a) = (y, f(y)(a)).$$

By definition, f is a homeomorphism from $U_{\alpha}(x) \times \mathbb{R}^{n}$ into $U_{\alpha}(x) \times \mathbb{R}^{n}$. Definition. We call f and g are equivalent if f and g coincide on some neighborhood of $x \times 0$ in $U_{\alpha}(x) \times \mathbb{R}^{n}$.

The set of equivalence classes of $H(U_{\alpha}(x), E_0(n))$ by this relation is denoted by $H_*(U_{\alpha}(x), E_0(n))$.

If $U_{\alpha}(x)$ contains $U_{\beta}(x)$, then there is a homeomorphism \bar{r}_{β}^{α} : $H_{*}(U_{\alpha}(x), E_{0}(n)) \rightarrow H_{*}(U_{\beta}(x), E_{0}(n))$ induced from the restriction homeomorphism. We set

(1) $H_*(n)_x = \lim \left[H_*(U_{\alpha}(x), E_0(n)), \bar{r}_{\beta}^{\alpha} \right].$

Lemma 1. $H_*(n)_x$ is a group.

If $f \in H(U, E_0(n))$, then its class in $H_*(n)_x$ is denoted by f_x . We set

(2) $U(f_x, V(x)) = \{f_y | y \in V(x)\}, V(x)$ is a neighborhood of x in X. In $\bigcup_{x \in X} H_*(n)_x$, we take $\{U(f_x, V(x))\}$ to be the neighborhood basis of f_x , then $\bigcup_{x \in X} H_*(n)_x$ becomes a sheaf of groups over X. We denote this sheaf by $H_*(n)_c$.

2. The cohomology set $H^{1}(X, H_{*}(n)_{c})$. Theorem 1. If X is a normal paracompact topological space, then there is a 1 to 1