130. Some Applications of the FunctionalRepresentations of Normal Operators in Hilbert Spaces. XXI

By Sakuji Inoue
Faculty of Science, Kumamoto University
(Comm. by Kinjirô Kunugi, m.J.A., June 13, 1966)
Definition A. Let $T(\lambda)$ be the function stated in [1]; let $\sigma=$ $\sup \left|\lambda_{\nu}\right|$; and let the mutually disjoint, closed, and connected domains $D_{j}^{\nu}(j=1,2,3, \cdots, n)$ which have no point in common with the closure of the denumerably infinite set $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3, \ldots}$ be contained in the disc $|\lambda| \leqq \sigma$. Hence, by definition, $T(\lambda)$ is regular in the complex λ-plane $\{\lambda:|\lambda|<+\infty\}$ with the exception of $\left\{\lambda_{\nu}\right\} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]$ and every point belonging to the set $\left\{\overline{\lambda_{\nu}}\right\} \cup\left[\bigcup_{j=1}^{n} D_{j}\right]$ is a singularity of $T(\lambda)$. Here $\left\{\overline{\lambda_{\nu}}\right\}$ denotes the closure of $\left\{\lambda_{\nu}\right\}$.

Theorem 59. Let

$$
m(\rho, \infty)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|T\left(\rho e^{-i t}\right)\right| d t(\sigma<\rho<+\infty)
$$

Then

$$
\varlimsup_{\rho \rightarrow o+0} \frac{m(\rho, \infty)}{\log \frac{1}{\rho-\sigma}}<+\infty
$$

Proof. Since, as already stated in [1], the sum-function $\chi(\lambda)$ of the first and second principal parts of $T(\lambda)$ is given by

$$
\begin{array}{r}
\chi(\lambda)=\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha}\left(f_{1 \alpha}+f_{2 \alpha}\right),\left(f_{1 \alpha}^{\prime}+f_{2 \alpha}^{\prime}\right)\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}^{j}}\left(\left(\lambda I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right) \\
=\sum_{\alpha=1}^{m} \sum_{\nu=1}^{\infty} \frac{c_{\alpha}^{(\nu)}}{\left(\lambda-\lambda_{\nu}\right)^{\alpha}}+\sum_{\alpha=1}^{m}\left(\left(\lambda I-N_{1}\right)^{-\alpha} f_{2 \alpha}, f_{2 \alpha}^{\prime}\right)+\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}}\left(\left(\lambda I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right) \\
\left(1 \leqq m, n, k_{j}<+\infty\right),
\end{array}
$$

where $\sum_{\nu=1}^{\infty}\left|c_{\alpha}^{(\nu)}\right| \leqq\left\|f_{1 \alpha}\right\|\left\|f_{1 \alpha}^{\prime}\right\|<+\infty$, we can find from the inequality ${ }^{+}+\mathrm{g}\left|\sum_{\mu=1}^{p} \alpha_{\mu}\right| \leqq \sum_{\mu=1}^{p} \log ^{+}\left|\alpha_{\mu}\right|+\log p$ holding for any complex numbers α_{μ} that

$$
\begin{aligned}
& +\quad+\left|T\left(\rho e^{-i t}\right)\right| \leqq+{ }^{+} \log \left|R\left(\rho e^{-i t}\right)\right| \\
& \quad++\log ^{+}\left|\sum_{\alpha=1}^{m} \sum_{\nu=1}^{\infty} \frac{c_{\alpha}^{(\nu)}}{\left(\rho e^{-i t}-\lambda_{\nu}\right)^{\alpha}}\right|+\log \left|\sum_{\alpha=1}^{m}\left(\left(\rho e^{-i t} I-N_{1}\right)^{-\alpha} f_{2 \alpha}, f_{2 \alpha}^{\prime}\right)\right| \\
& \quad+\log \left|\sum_{j=2}^{n} \sum_{\beta=1}^{k_{j}}\left(\left(\rho e^{-i t} I-N_{j}\right)^{-\beta} g_{j \beta}, g_{j \beta}^{\prime}\right)\right|+\log 4(\sigma<\rho<+\infty),
\end{aligned}
$$

where $R(\lambda)$ denotes the ordinary part of $T(\lambda)$ and hence is an integral

