160. On P^{*} Spaces and Equicontinuity

By Junzo WADA

Waseda University, Tokyo

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

Let P be a topological property.¹⁾ A topological space X is called a P^* space if a subset U of X is open in X whenever $U \cap K$ is open in K for any subset K in X satisfying P. The purpose of this note is to investigate properties of P^* spaces and as applications to obtain some extensions of a theorem of Gleason $\lceil 2 \rceil$ and the Ascoli's theorem.

1. Let E be a set, then we can consider the lattice of all topologies on E, that is, the ordering of the lattice can be defined as follows; $X \ge Y$ if $O(X) \supset O(Y)$, where O(X) (or O(Y)) is the set of all open subsets in X (or Y). For any family $\{X_i\}$ of topological spaces on E, $\forall X_j$ or $\land X_j$ denotes the join or the meet of $\{X_i\}$ ([4], [6]). A topological property P is said to have the *condition* (C) if it satisfies the following condition; any space consisting of one point has P, and any continuous image of X also satisfies P if a topological space X has P. Examples of topological properties having (C) are "compact", "separable", "connected", and "arcwise connected",²⁾ and any k-space ([5]) is a P^* space, where P is "compact".

We first prove the following theorem.

1.1. Theorem. Let a topological property P have (C). If $\{X_{\alpha}\}$ are P^* spaces on the same basic set, then $\wedge X_{\alpha}$ is also a P^* space.

Proof. Put $Z = \bigwedge X_{\alpha}$, then Z is a quotient space (cf. [5]) of $\sum X_{\alpha}$, where $\sum X_{\alpha}$ denotes the sum of X_{α} .³⁾ Since $\{X_{\alpha}\}$ are P^* spaces, it is clear that $\sum X_{\alpha}$ is a P^* space, so by the next lemma, the theorem is proved.

1.2. Lemma. Let P be a topological property satisfying (C). If X is a P^* space then any quotient space of X is also a P^* space.

Proof. The lemma can be proved easily.

¹⁾ Let P be a property of topological spaces. P is said to be topological if it is invariant under homeomorphisms.

²⁾ X is arcwise connected if for two points a, b in X there is a continuous image of closed interval containing a, b in X.

³⁾ The fact is due to Professor K. Morita. In $\sum X_{\alpha}$, $\{X_{\alpha}\}$ are mutually disjoint and any X_{α} is open in $\sum X_{\alpha}$.