160. On P^{*} Spaces and Equicontinuity

By Junzo Wada
Waseda University, Tokyo

(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1966)
Let P be a topological property. ${ }^{1)}$ A topological space X is called a P^{*} space if a subset U of X is open in X whenever $U \cap K$ is open in K for any subset K in X satisfying P. The purpose of this note is to investigate properties of P^{*} spaces and as applications to obtain some extensions of a theorem of Gleason [2] and the Ascoli's theorem.

1. Let E be a set, then we can consider the lattice of all topologies on E, that is, the ordering of the lattice can be defined as follows; $X \geqq Y$ if $O(X) \supset O(Y)$, where $O(X)$ (or $O(Y)$) is the set of all open subsets in X (or Y). For any family $\left\{X_{j}\right\}$ of topological spaces on $E, \vee X_{j}$ or $\wedge X_{j}$ denotes the join or the meet of $\left\{X_{j}\right\}$ ([4], [6]). A topological property P is said to have the condition (C) if it satisfies the following condition; any space consisting of one point has P, and any continuous image of X also satisfies P if a topological space X has P. Examples of topological properties having (C) are "compact", "separable", "connected", and "arcwise connected", ${ }^{2)}$ and any k-space ([5]) is a P^{*} space, where P is "compact".

We first prove the following theorem.
1.1. Theorem. Let a topological property P have (C). If $\left\{X_{\alpha}\right\}$ are P^{*} spaces on the same basic set, then $\wedge X_{\alpha}$ is also a P^{*} space.

Proof. Put $Z=\wedge X_{\alpha}$, then Z is a quotient space (cf. [5]) of $\sum X_{\alpha}$, where $\sum X_{\alpha}$ denotes the sum of $X_{\alpha \cdot}{ }^{3)}$ Since $\left\{X_{\alpha}\right\}$ are P^{*} spaces, it is clear that $\sum X_{\alpha}$ is a P^{*} space, so by the next lemma, the theorem is proved.
1.2. Lemma. Let P be a topological property satisfying (C). If X is a P^{*} space then any quotient space of X is also a P^{*} space.

Proof. The lemma can be proved easily.

[^0]
[^0]: 1) Let P be a property of topological spaces. P is said to be topological if it is invariant under homeomorphisms.
 2) X is arcwise connected if for two points a, b in X there is a continuous image of closed interval containing a, b in X.
 3) The fact is due to Professor K. Morita. In $\sum X_{\alpha},\left\{X_{\alpha}\right\}$ are mutually disjoint and any X_{α} is open in $\sum X_{\alpha}$.
