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1. Introduction. In recent years, interest in discontinuous
solutions of the Cauchy problem for nonlinear partial differential
equations has conciderably increased and much progress has been
made for quasi-linear first-order equations of conservation type in a
single space variable (see Oleinik [3 for a survey of literatures).

In the case of several space variables, using a finite difference
scheme, Conway and Smoller _1 has proved the existence of weak
solutions of the Cauchy problem

(1.1) ut+ 3f(u) -0
=1 x

with a bounded measurable initial function having locally bounded
variation in the sense of Tonelli-Cesari. A function f is said to have
locally bounded variation in the sense of Tonelli-Cesari over R if
for any compact set K in R there exists a set N of measure zero
such that
V(x,... ,x_, x+,... ,x)- Var f(x,...,x_,., x+,..., x), i- 1,... ,n

is measurable and summable, and we denote by F the class of these
functions.

The purpose of this paper is to prove the existence of weak
solutions of the Cauchy problem of the type:

(1.2) +, if(t, x, )+(t, x, )=0,

(1.3) u(O, x)--Uo(X) e F.
For simplicity, we restrict ourselves to the case n-2. But it will
be easily seen that one can extend at once everything which we do
in this case to the case n_>_3. Thus we shall consider the Cauchy
problem

(1.4) u---- f(t, x, y, u)/ g(t, x, y, u)/ h(t, x, y, u)-O,

(1.5) u(O, x, y)--Uo(X, y) e F,
in the region

G={(t, x, y); 0___t__< T<oo, --oo<x,
We call a function u(t, x, y) a weak solution of (1.4), (1.5) if it


