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1. Introduction. One of the early decomposition theorems
for semigroups was given by David McLean 2 and may be stated
as follows:

Theorem. An idempotent semigroup S has a greatest semi-
lattice decomposition into rectangular bands.

In his proof McLean defines a relation a on S by
aab if and only if aba=a and bab=b

a is then shown to be the smallest semilattice congruence (abbr.
s-congruence) on S. That is, S/a is a semilattice, and if S/a’ is a
semilattice then a_a’. The most difficult part of this proof is in
showing the transitivity of a. We will give another proof based
on the concept of "content" of a semigroup and a theorem of
T. Tamura [4. Finally we will give another proof of the following
theorem of T. Tamura and N. Kimura [3.

Theorem. A commutative semigroup S has a greatest semi-
lattice decomposition into archimedean semigroups.

2. Contents. Definition 1. Let a, a., ..., a. be elements of a
semigroup S. The "content" of a, a,..., a in S, C(a, a.,...,
is the set of elements of S which can be expressed as a product
involving all the elements a, a:,..., a.

From the definition it is obvious that Cs(a, a, ..., a} is a
subsemigroup of S. As a special case we consider a band.

Lemma 1. Let S be a band. Then any content Cx, x,...,
is a rectangular band.

To prove Lemma 1 it is sufficient to prove Lemma 2.
Lemma 2. Let F be a free band generated by a,a,...,

A content Ca, a:,..., a} is a rectangular band.
However we will prove Lemma 4 which is a more generalized

form of Lemma 2.
Let F be the free band generated by G={gx:2 e A}.
Definition 2. If Xe F, let G(X)={gx e G: X=gxlgx2 gx.}. 1)

Lemma 3. If X, Ye F then
G(XY)=G(X) U G(Y)

1) A similar definition was used by Green and Rees [1].


