190. Axiom Systems of B-Algebra

By Corneliu SICOE

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1966)

In his note [1] Kiyoshi Iséki gave an algebraic formulation of propositional calculi and he defined *B*-algebra.

Other characterisations of *B*-algebra are given by K. Iséki, Y. Arai, and K. Tanaka (see [2]-[5]).

Let $\langle X, 0, *, \sim \rangle$ be an algebra where 0 is an element of a set X, * is a binary operation and \sim is an unary operation on X. We write $x \leq y$ for x * y = 0, and x = y for $x \leq y$ and $y \leq x$.

The axiom system of *B*-algebra is given by (see [2])

In this note we shall show that a *B*-algebra is characterized by the following axiom system.

B1. $(x*y)*z \leq x$, B2. $x * y \leq \sim y$, B3. $(x * (y * z)) * (x * y) \le x * (\sim z),$ B4. $0 \leq x$. Lemma 1. $H \Rightarrow B$. In H2, put $z = \sim y$, then by H4, we have (1) $x * y \leq \sim y$, which is axiom B2. In H3, put x * z = z * y = 0, then $x \leq y, y \leq z$ imply $x \leq z$. (2)In H1, put x=x*y, y=z, then by H1 we have (3) $(x*y)*z \leq x*y$. By (3), H1 and (2) we have (4) $(x * y) * z \leq x$ which is axiom B1. Put y = y * z, z = x * y in H2, then, we have (5) $(x*(y*z))*(x*y) \le (x*(x*y))*(y*z).$ Let us put x = x * z, y = y * z, z = x * y in H2, then $((x*z)*(y*z))*(x*y) \le ((x*z)*(x*y))*(y*z).$ The right side is equal to 0 by H3, hence we have (6) $(x*z)*(y*z) \leq x*y$.