9. An Algebraic Formulation of K-N Propositional Calculus. II

By Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

In his paper [1], K. Iséki has defined K-N algebra as follows: Let X be an abstract algebra consisting of $0, p, q, \dots$, with a binary operation * and a unary operation \sim satisfying the following conditions:

a)
$$\sim (p*p)*p=0$$
,

b)
$$\sim p * (q * p) = 0$$
,

c) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,

d) $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α, β are expressions in X.

In this paper, we shall show that the NK-algebra is characterized by the following conditions:

1)
$$\sim (p*p)*p=0$$
,

2) $\sim q * (q * p) = 0$,

3) $\sim \sim (\sim \sim (p * r) * \sim (r * q)) * \sim (\sim q * p) = 0$,

4) $\sim \sim \beta \ast \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α, β are expressions (For the details on *N-K* propositional calculus, see [2], [3], [4].)

K. Iséki has proved that the NK-algebra implies $\sim q * (q * p) = 0$. Therefore we shall prove that 1), 2), 3), and 4) imply b).

A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0$.

Proof. In 3), put $p=\beta$, $q=\alpha$, $r=\gamma$, then by 4) we have A). Then we have

B) $\sim \alpha * \beta = 0, \sim \gamma * \alpha = 0$ imply $\beta * \sim \gamma = 0.$

In A), put $\alpha = p * p$, $\beta = p$, $\gamma = \sim p$, then $\sim (p * p) * p = 0$ implies $\sim \sim (p * \sim p) * \sim (\sim p * (p * p)) = 0$.

By 2), we have

5) $p*\sim p=0.$

In 3), put $p = \sim \sim q$, $r = \sim r$, then $\sim \sim (\sim \sim (\sim \sim q * \sim r) * \sim (\sim r * q)) * \sim (\sim q * \sim \sim q) = 0$. And In 3), put $p = \sim \sim q$, then $\sim \sim (\sim \sim (\sim \sim q * r) * \sim (r * q)) * \sim (\sim q * \sim \sim q) = 0$.

By 5), $\sim q * \sim \sim q = 0$, hence we have

$$6_1) \sim \sim (\sim \sim q \ast \sim r) \ast \sim (\sim r \ast q) = 0,$$

and

 $6_2) \sim \sim (\sim \sim q * r) * \sim (r * q) = 0.$