8. Algebraic Formulation of Propositional Calculi with General Detachment Rule

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

R. B. Angell [1] formulated a general detachment rule: α and $\varphi(c\alpha\beta)$ imply $\varphi(\beta)$, and further I. Thomas [7] considered on this general detachment rule.

On the other hand, in my notes ([3], [4]), I gave a fundamental idea of algebraic formulations of propositional calculi. This is as follows: Let $M = \langle X, 0, \{o_{\alpha}\} \rangle$ be an algebra consisting of a set X containing a zero element 0 and a family of operations $\{o_{\alpha}\}$ containing a binary operation *. On the operation *, there are common properties: 1) x * y = 0 is equivalent to $x \leq y$, 2) x = y is defined by x * y = y * x = 0. This means that if $x \leq y, y \leq x$, then x = y.

As easily seen from [1], [7], the general detachment rule is formulated in the form of x*0=x for all $x \in X$ in the algebra M. Therefore, if we add this axiom to the algebra M, we obtain an algebraic formulation of propositional calculi with a general detachment rule.

In this Note, we shall consider such algebras M.

- In our notes ([2], [5]), if an algebra $M = \langle X, 0, * \rangle$ satisfies
- 1) $(x*y)*(x*z) \leq z*y$,
- 2) $x*(x*y) \leq y$,
- 3) $x \leqslant x$,
- 4) $x \leq 0$ implies x = 0,

then M is called a BCI-algebra.

In the BCI-algebra, we have (x*y)*z=(x*z)*y (see Theorem 1 in [5]). Hence we have (x*0)*x=(x*x)*0=0 by 3), and further x*(x*0)=0 by 2). This shows x*0=x for all $x \in X$.

Then we have the following

Theorem 1. An algebra M is a BCI-algebra if and only if M satisfies

- 5) $((x*y)*z)*(u*z) \leq (x*u)*y$,
- 6) x * 0 = x,
- 7) $x \leq 0$ implies x = 0.

Proof. Put z=0 in 5), then

8) $(x*y)*u \leq (x*u)*y$.

Hence we have (x*y)*u=(x*u)*y. Next put y=0 in 5), then 9) $(x*z)*(u*z) \leq x*u$.