5. Some Generalizations of V. Trnkova's Theorem on Unions of Strongly Paracompact Spaces

By Yoshikazu YASUI

Department of Mathematics, Osaka Gakugei University

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1967)

V. Trnkova [5] has recently investigated the unions of strongly paracompact spaces and he has proved the following interesting theorem:

If space $X = X_1 \cup X_2$, X_1 , X_2 are closed and strongly paracompact subspaces, and the space $X_1 \cap X_2$ has the locally Lindelöf property, then X is itself strongly paracompact. In this note, we shall obtain some generalizations of V. Trnkova's Theorem.

Let us quickly recall the definitions of terms which are used in this note. Let X be a topological space, and \mathfrak{N} be a collection of subsets of X. The collection \mathfrak{N} is said to be *locally finite* if every point of X has a neighborhood which intersects only finitely many elements of \mathfrak{N} . The collection \mathfrak{N} is said to be *star finite* (resp. *star countable*) if each element of \mathfrak{N} intersects only finitely (resp. only countably) many elements of \mathfrak{N} . Finally, X is said to be *paracompact* (resp. *strongly paracompact*) if X is Hausdorff and every open covering of X has a locally finite open covering (resp. star finite open covering) of X as a refinement.

§1. Generalizations. In this section, we shall get some generalizations of V. Trnkova's Theorem. At first, we shall show some lemmas.

Lemma 1. Let $\mathfrak{B} = \{B_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular space X. If each B_{α} has the locally Lindelöf property as a subspace, then X has the locally Lindelöf property.

Proof. Let x_0 be an arbitrary point of X. Then, there exists a closed neighborhood $V_0(x_0)$ of x_0 in X such that $V_0(x_0)$ intersects only all the members $B_{\alpha_1}, \dots, B_{\alpha_n}$ containing x_0 . For each $i=1, 2, \dots, n$, by the locally Lindelöf property of B_{α_i} , we have the closed neighborhood $V_i(x_0)$ of x_0 in X such that $V_i(x_0) \cap B_{\alpha_i}$ has the Lindelöf property. Let $V = \bigcap_{i=0}^{n} V_i(x_0)$, then V is a neighborhood of x_0 and $V = V \cap (\bigcup_{i=1}^{n} B_{\alpha_i})$ $= \bigcup_{i=1}^{n} (V \cap B_{\alpha_i})$. This relation implies the Lindelöf property of V. Thus we get Lemma 1.

Lemma 2. Let $\{F'_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular space X where the index set A is a well ordered set. If we define as follows: $F_1 = F'_1$, $F_{\alpha} = \overline{F'_{\alpha} - \bigcup_{\beta < \alpha} F'_{\beta}}$ for each $\alpha > 1$, then