1. On the Decomposition of Regular Representation of the Lorentz Group on a Hyperboloid of one Sheet

By Takuro Shintani

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Jan. 12, 1967)

1. Let G_n be the subgroup of GL(n + 1, R) consisting of elements which leave invariant the quadratic form $-x_0^2 + x_1^2 + \cdots + x_n^2$, and G_n^+ be the connected component of G_n . Let X be the hyperboloid of one sheet in R^{n+1} with the equation $x_0^2 - x_1^2 - \cdots - x_n^2 = -1$. G_n naturally operates on X and the measure on X defined by dx $= \frac{dx_1 \cdots dx_n}{|x_0|}$ is invariant under the action of G_n . Let $L^2(X)$ be the

Hilbert space of functions on X which are square integrable with respect to this measure. Then we get the unitary representation π of G_n^+ on $L^2(X)$ defined as follows: $(\pi(g)f)(x) = f(xg), g \in G_n^+, f \in L^2(X), x \in X$. We denote the corresponding representation of the universal enveloping algebra of Lie algebra of G_n^+ also by π . In this note we decompose π into direct sum of irreducible representations. In the following, we use the notations defined in R. Takahashi [1] Chap. I, §1, §2 without further reference.

2. For any complex number s we define the representations (U^s, \mathcal{H}) of G_n^+ as follows:

Let H be the linear space of C^{\bullet} functions on K which are invariant under left translations of M and $(U^{s}(g)f)(k) = e^{-st(k,g)}f(kg)$, $f \in \mathcal{H}$, where kg and t(k,g) is defined uniquely by the relations $kg = a_{t(k,g)}n kg$, $a_{t(k,g)} \in A$, $n \in N$, and $kg \in K$. In the following for special value of s we define the positive (in general not definite) inner product $(,)_{s}$ in \mathcal{H} so that U_{s} becomes unitary, and we get unitary representation (U_{s}, \mathcal{H}_{s}) where \mathcal{H}_{s} is the completion of \mathcal{H} with respect to the norm $|| \quad ||_{s}$ defined by inner product $(,)_{s}$.

When $s = -\frac{n-1}{2} + i\rho$, $\rho \in R$, we define for any $\varphi, \psi \in \mathcal{H}$, $(\varphi, \psi)_s = \int \varphi \overline{\psi} \, dk$ where dk is the normalized Haar measure of K. For any

$$arphi, \psi \in \mathcal{H}, ext{ and } s, \left(\operatorname{Re} s < -rac{n-1}{2}
ight) ext{ we put} \ I_s(arphi, \psi) = C_s \int \langle vk_1, vk_2
angle^{-(n-1+s)} arphi(k_1) \overline{\psi(k_2)} \, dk_1 \, dk_2 \ ext{where } C_s = rac{\sqrt{\pi} \, \Gamma(-s)}{2^{-(1+s)} \Gamma\left(rac{n}{2}
ight) \Gamma\left(-\left(s+rac{n-1}{2}
ight)
ight)} ext{ and } v = (1, -1, 0, \dots, 0).$$