17. On a Theorem Concerning
 Trigonometrical Polynomials

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m.J.A., Feb. 13, 1967)

§ 1. H. Davenport and H. Halberstan [1] have proved the following theorem from which they have derived a generalization of theorems of K. F. Roth [2] and E. Bombieri [3] on the large sieve:

Thoerem DH1. ${ }^{1{ }^{1}}$ Let $S_{\mathrm{N}}(x)$ be a trigonometrical polynomial of order N such that

$$
S_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

and $x_{1}, x_{2}, \cdots, x_{R}(R \geqq 2)$ be distinct points on $(-\pi, \pi)$ such that

$$
2 \delta=\min _{j \neq k}\left|x_{j}-x_{k}\right| .
$$

Then

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N N}\left(x_{r}\right)\right|^{2} \leqq 4 \cdot 4 \max (N, \pi / 2 \delta) \sum_{n=-N}^{N}\left|c_{N}\right|^{2} . \tag{1}
\end{equation*}
$$

Our first theorem is as follows:
Theorem 1. Using the same notation as in Theorem DH1, we have

$$
\begin{equation*}
\sum_{r=1}^{R}\left|S_{N}\left(x_{r}\right)\right|^{2} \leqq A \sum_{n=-N}^{N}\left|c_{n}\right|^{2} \tag{2}
\end{equation*}
$$

for small δ, where $A \leqq 2.34(N+\pi / \delta)$ or $A \leqq 3.13(N+\pi / 2 \delta)$.
The inequalities (1) and (2) are mutually exclusive. If N is near to $\pi / 2 \delta$, then (1) is better than (2), but if they are very different, then (2) is better than (1), except for "small δ."

Further H. Davenport and H. Halberstan [1] proved the following
Theorem DH2. Using the same notation as in Theorem DH1, we have

$$
\begin{equation*}
\sum_{r=1}^{R} \mid S_{N}\left(x_{r}\right)^{p} \leqq A \sqrt{p} \max (N, 2 \pi / \delta)\left(\sum_{n=-N}^{N}\left|c_{n}\right|^{q}\right)^{p / q} \tag{3}
\end{equation*}
$$

where A is an absolute constant and $1 / p+1 / q=1, p \geqq 2$.
Our second theorem is
Theorem 2. Using the same notation as in Theorem DH1,

1) In [1], Theorem DH1 is stated for the trigonometrical polynomial on the interval (0,1), that is, $S_{N}=\sum_{n=-N}^{N} c_{n} e^{2 \pi i n x}$. Further 2δ in $(-\pi, \pi)$ corresponds to $2 \delta / 2 \pi$ in (0,1).
