47. On the Classical Propositional Calculus of A. R. Anderson and N. D. Belnap

By Kiyoshi Isteki
(Comm. by Kinjirô Kunugi, m.J.A., March 13, 1967)
In this paper, we concern with the classical propositional calculus by A. R. Anderson and N. D. Belnap [1]. In their system, axioms are formulated as "if p and $\sim p$ are in a primitive disjunction α, then α is an axiom", and rules of deduction as

$$
\text { I) } \frac{\varphi(\alpha)}{\varphi(\sim \sim \alpha)}, \quad \text { II) } \frac{\varphi(\sim \alpha), \varphi(\sim \beta)}{\varphi(\sim(\alpha \vee \beta))} .
$$

We shall show that, if we interpret $p \rightarrow q$ as $\sim p \vee q$, then we have Lukasiewicz axiom system:

1) $p \rightarrow(q \rightarrow p)$,
2) $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$,
3) $(\sim p \rightarrow \sim q) \rightarrow(q \rightarrow p)$.

To prove 1), take
(1) $\sim p \vee(\sim q \vee p)$,
then (1) is an axiom, since (1) contains p and $\sim p$ at the same time. Hence $p \rightarrow(\sim q \vee p)$ and we have $p \rightarrow(q \rightarrow p)$.

To prove 2), it is sufficient to show
(2) $\sim(\sim p \vee \sim q \vee r) \vee \sim(\sim p \vee q) \vee \sim p \vee r$.

The following formulas are axioms:
(3) $\sim r \vee(\sim p \vee r) \vee \sim q$,
(4) $q \vee(\sim p \vee r) \vee \sim q$,
(5) $p \vee(\sim p \vee r) \vee \sim q$.

By the rule of deduction I), (4) implies
(6) $\sim \sim q \vee(\sim p \vee r) \vee \sim q$,
similarly by I), (5) implies
(7) $\sim \sim p \vee(\sim p \vee r) \vee \sim q$.

Then, by II), (3) and (6) imply
(8) $\sim(\sim q \vee r) \vee(\sim p \vee r) \vee \sim q$.

Further, by II), (7) and (8) imply
(9) $\sim(\sim p \vee(\sim q \vee r)) \vee(\sim p \vee r) \vee \sim q$.

On the other hand,
(10) $\sim r \vee(\sim p \vee r) \vee p$,
(11) $q \vee(\sim p \vee r) \vee p$,
(12) $p \vee(\sim p \vee r) \vee p$.
are axioms in this system. By I), (10) implies
(13)

$$
\sim r \vee(\sim p \vee r) \vee \sim \sim p
$$

