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The purpose of this part of the present paper is to state a proof
of Theorem 1 in [1].

Remark. The proof of Theorem 1 in [1] follows from the
propositions (execept Propositions 3.1 and 3.2) in section 3 in [1] and
therefore this theorem also holds if we replace the assumption for
S in the definition of a structure by the condition stated in the
remark in section 3 in [1].

Denote by &, the perfection of G and by &, the perfection of the
closure G, of G, in &.

Lemma 1. The integral closure G of G is the F-completion of
G,.

Proof. Let G, be the F-completion of G,. Then Proposition 3.10
[1] implies that &, is the F-completion of &G,. Hence it follows
from Proposition 3.17 [1] that &, is closed and therefore &, is
i-closed. To prove that G G, let us consider the F-completion &G,
of G.. Then Proposition 3.10 [1] implies that Gc G, and the formula
G,c G, implies that G,cG,. Thus we have GcG,. It is easily
verified that &G, is the smallest of i-closed subgroups of & containing
G. This proves the lemma.

Let I be the perfection of J and let I, be the restriction of I
on X@ for each XeS. Then I, is a continuous homomorphism of
XG, into J for each XeS.

Lemma 2. Iy ts uniquely extended to a continuous homomor-
phism Iy of XG, into J for each XeS.

Proof. From the continuity of X, it follows that XG,c XG,
and therefore that XG, is dense in XG,. Since J is Hausdorff and
complete, this lemma follows from Bourbaki.?

Considering the map I, in Lemma 2, we have

Lemma 3. There uniquely exists an imtegral map I with
respect to (S, G,, J) such that the restriction of I on XG, coincides
with Iy for each X e S.

Proof. Let us prove that I, (f)=I, (f) for X, YeS, and

1) [2] chap. III. Groupes Topologiques, §3, no 3, Proposition 5.



