71. A Remark on Ikegami's Paper "On the Non-Minimal Martin Boundary Points"

By Nobushige TODA

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

In the theory of the Martin compactification (see [2]), it is of interest to know how many non-minimal points there are. Recently Ikegami ([1]) has proved that, if the set of non-minimal points is not void, it contains infinitely many points.

Let Ω be a Green space, $\widehat{\Omega}$ its Martin compactification, Δ the Martin boundary of Ω and Δ_1, Δ_0 the minimal and non-minimal part of Δ respectively.

We will improve Ikegami's result as follows:

Theorem. If Δ_0 is not void, then Δ_0 is uncountable.

Proof. Let ω be an open set of Ω , $\{x_n\}$ a sequence of points in ω tending to x_0 of Δ , $\mathcal{E}^{\omega}_{K_{x_n}}(y)$ the extremisation of $K(x_n, y)$ relative to ω , which is written by

$$\mathcal{E}^{\omega}_{K_{x_n}}(y) = \int K(x, y) d\mu_n(x)$$

where K(x, y) is the Martin kernel, μ_n is a positive mass-distribution on $\overset{*}{\omega} \cap \Omega$ and the total mass of μ_n does not exceed 1, $\overset{*}{\omega}$ being the boundary of ω in $\hat{\Omega}$. A subsequence of $\{\mu_n\}$ converges vaguely to μ whose carrier is contained in $\overline{\overset{*}{\omega} \cap \Omega}$.

Clearly,

Let μ_1 be

$$v(y) = \int K(x, y) d\mu(x)$$

is a positive superharmonic function in Ω . Ikegami proved in [1] that

$$\mathcal{E}^{\omega}_{K_{x_0}}(y) \leq v(y).$$

the restriction of μ to \varDelta , and

$$u(y) = \int K(x, y) d\mu_1(x).$$

Then u(y) is the greatest harmonic minorant of v(y).

Let x_0 be a point of Δ_0 . By the Martin representation theorem ([2]), there exists a measure ν on Δ_1 such that

We put $D_r = \{x; \rho(x_0, x) < r\}$ and $C_r = \{x; \rho(x_0, x) = r\}$ where ρ implies the Martin metric in $\hat{\Omega}$. There exists an r_0 such that for all r