69. The Normality of the Product of Two Linearly Ordered Spaces

By Isao Hayashi

Nagoya University

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

Introduction. Let X and Y be normal topological spaces. The product space $X \times Y$ is not necessarily normal. The problem of deciding when $X \times Y$ is normal, is interesting, in view of the fact that a Hausdorff topological space is normal if and only if any continuous real-valued function defined on any closed subset can be extended to a continuous function on the whole space. In this paper we shall settle this problem in the case where each factor space is a locally compact linearly ordered space. Our result extends the Ball's theorem $\lceil 1 \rceil$, which assumes that one factor space is compact.

1. By a linearly ordered space we mean a linearly ordered set with the interval topology. It is well known that every such space is normal.

Let L be a non-empty linearly ordered space. An interior gap of L is a Dedekind cut (A | B) of L such that $A \neq \phi, B \neq \phi$. A has no last point and B has no first point. If L has no first (last) point, there exists a left (right) end gap $(\phi | L)$ $((L | \phi))$. We denote by L' the set of all gaps of L and by \overline{L} the sum of L and L'. \overline{L} is a compact linearly ordered space. To denote intervals of L, we shall employ the Bourbaki's symbols, $[,],] \leftarrow, [$, etc. Boundaries of an interval of L may be gaps of L as well as points of L.

We define $\rho(L)$ as follows. In case L has a right end gap which is not a limit of interior gaps of L, we put $\rho(L) = \alpha$, where α is a regular initial ordinal such that there exists an increasing sequence $\{x_{\lambda}; \lambda < \alpha\}$ of points of L which is cofinal with L. In all other cases we put $\rho(L)=0$, more precisely, $\rho(L)=0$ in the following three cases; (1) $L=\phi$, (2) L has a last point, (3) L has a right end gap which is a limit of interior gaps of L.

Let u be any point or gap of L. We put $\rho_{-}(u) = \rho(] \leftarrow, u[)$ and $\rho_{+}(u) = \rho(]u, \rightarrow [*)$, where * signifies the inversely ordered set. Finally we define $\tau(L)$ for locally compact linearly ordered space L, as follows. $\tau(L) =$ the smallest regular initial ordinal α such that $\rho_{-}(x) < \alpha$ and $\rho_{+}(x) < \alpha$ for every point $x \in L$.

We shall say that a point or gap u of L is of type α , if either $\rho_{-}(u) = \alpha$ or $\rho_{+}(u) = \alpha$. We denote by ω the first infinite ordinal.