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Introduction. Let X and Y be normal topological spaces. The
product space X Y is not necessarily normal. The problem of decid-
ing when X Y is normal, is interesting, in view of the fact that
a Hausdorff topological space is normal if and only if any continuous
real-valued function defined on any closed subset can be extended
to a continuous function on the whole space. In this paper we shall
settle this problem in the case where each factor space is a locally
compact linearly ordered space. Our result extends the Ball’s theorem
[1, which assumes that one factor space is compact.

1o By a linearly ordered space we mean a linearly ordered set
with the interval topology. It is well known that every such space
is normal.

Let L be a non-empty linearly ordered space. An interior gap
of L is a Dedekind cut (A[B) of L such that A=/=, B=/=. A has
no last point and B has no first point. If L has no first (last)point,
there exists a left (right) end gap (. L) ((LIe)). We denote by L’
the set of all gaps of L and by L the sum of L and L’. L is a
compact linearly ordered space. To denote intervals of L, we shall
employ the Bourbaki’s symbols, _, , -, , etc. Boundaries of an
interval of L may be gaps of L as well as points of L.

We define p(L) as follows. In case L has a right end gap which
is not a limit of interior gaps of L, we put p(L)-a, where r is a
regular initial ordinal such that there exists an increasing sequence
{x; 2} of points of L which is cofinal with L. In all other cases
we put p(L)-0, more precisely, p(L)-O in the following three cases;
(1) L-C, (2) L has a last point, (3) L has a right end gap which
is a limit of interior gaps of L.

Let u be any point or gap of L. We put p_(u)-p( ,u[ )
and p+(u)-p( u,--[ * ), where * signifies the inversely ordered
set. Finally we define v(L) for locally compact linearly ordered
space L, as follows, v(L)-the smallest regular initial ordinal a
such that p_(x)v and p+(x)o for every point x e L.

We shall say that a point or gap u of L is of type r, if either
p_(u)-r or p+(u)-v. We denote by co the first infinite ordinal.


