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66. Relations between Complete Integral Seminorms
and Complete Volumes

By Witold M. BOGDANOWICZ
Catholic University of America, Washington, D. C., U.S.A.

(Comm. by Kinjir6 KUNUGI, M.J.A., April 12, 1967)

Let / be a measure on a a-ring M. Denote by v-tl the func-
tion defined by the formula: v(A)-I(A for A e V, where

V- {A e M’/(A)< c}.
It is easy to see that the family V is a prering and the function
v is a volume. This volume will be called the finite part of the
measure /. If one follows carefully any construction of the space
L,(Y) of Lebesgue-Bochner summable functions generated by the
measure f one notices that essentially one needs only the finite part
of the measure.

Further observation yields that one needs actually only a func-
tional J which we call a complete integral seminorm. This functional
is given by the formula

tfd/ (f e L),Jf=
where L+ consists of all finite-valued -summable nonnegative func-
tions. In this paper we shall find inner characterizations of complete
integral seminorms.

If f, g are two real valued functions then by fg, fg, fl
we shall understand the functions (fg)(x)-inf{f(x), g(x)}, (fg)(x)
=sup{f(x), g(x)}, (f 1)(x)-inf{f(x), 1} for all x e X.

We shall write f_g if f(x)_g(x) for all x e X. In a similar way
we define the relation f>_g.

A sequence f is called increasing (decreasing) if the condition
n

_
m implies f_<f (f:>f, respectively).
A nonnegative functional J is called an integral seminorm over

the space X if its domain J+ consists of functions from X into
R /- 0, c) and the following three conditions are satisfied:

(1) If t, t e R+ and fi, f e J+ then tfi + tf e J+ and
J(tlf / tff) tiJfi / t.Jfi..

(2) If f,gJ+ then fUgeJ+ and fleJ+.
(3) If f_g and f, g e J+ then g-fe J+.
The integral seminorm is called upper complete if, for every

increasing sequence f e J+, converging at every point of the space
to a finite-valued function f, for which the sequence of numbers
Jf is bounded, we have f e J/ and JfJf.


