66. Relations between Complete Integral Seminorms and Complete Volumes

By Witold M. BOGDANOWICZ

Catholic University of America, Washington, D. C., U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

Let μ be a measure on a σ -ring M. Denote by $v = t\mu$ the function defined by the formula: $v(A) = \mu(A)$ for $A \in V$, where

$$\mathcal{V} = \{A \in M : \mu(A) < \infty\}.$$

It is easy to see that the family V is a prering and the function v is a volume. This volume will be called the finite part of the measure μ . If one follows carefully any construction of the space $L_{\mu}(Y)$ of Lebesgue-Bochner summable functions generated by the measure μ one notices that essentially one needs only the finite part of the measure.

Further observation yields that one needs actually only a functional J which we call a complete integral seminorm. This functional is given by the formula

$$Jf = \int fd\mu \ (f \in L^+_\mu),$$

where L^+_{μ} consists of all finite-valued μ -summable nonnegative functions. In this paper we shall find inner characterizations of complete integral seminorms.

If f, g are two real valued functions then by $f \cap g$, $f \cup g$, $f \cap 1$ we shall understand the functions $(f \cap g)(x) = inf\{f(x), g(x)\}, (f \cup g)(x)$ $= sup\{f(x), g(x)\}, (f \cap 1)(x) = inf\{f(x), 1\}$ for all $x \in X$.

We shall write $f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$. In a similar way we define the relation $f \geq g$.

A sequence f_n is called increasing (decreasing) if the condition $n \le m$ implies $f_n \le f_m$ ($f_n \ge f_m$, respectively).

A nonnegative functional J is called an integral seminorm over the space X if its domain J^+ consists of functions from X into $R^+=<0,\infty)$ and the following three conditions are satisfied:

(1) If $t_1, t_2 \in \mathbb{R}^+$ and $f_1, f_2 \in J^+$ then $t_1f_1 + t_2f_2 \in J^+$ and

$$J(t_1f_1+t_2f_2)=t_1Jf_1+t_2Jf_2.$$

(2) If $f, g \in J^+$ then $f \cup g \in J^+$ and $f \cap 1 \in J^+$.

(3) If $f \leq g$ and $f, g \in J^+$ then $g - f \in J^+$.

The integral seminorm is called *upper complete* if, for every increasing sequence $f_n \in J^+$, converging at every point of the space to a finite-valued function f, for which the sequence of numbers Jf_n is bounded, we have $f \in J^+$ and $Jf_n \rightarrow Jf$.