62. Sur la méthode des espaces rangés. III

Par Yukio Yoshida

Université d'Osaka

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

La notion de la convergence dans les espaces rangés, induite par Prof. K. Kunugi ([1] et [2]), peut être considérée, dans un sens, comme une généralisation de celle dans les espaces topologiques. Dans cette note, nous allons le montrer et introduire quelques notations qui sont utiles à traduire des notions sur les espaces topologiques en des notions sur les espaces rangés.

Dans toute cette note, soit R un espace rangé ayant l'indicateur ω , désignons par $\mathfrak{B}_{\alpha}(x)$ la famille de tous les voisinages de rang α de point x quelconque de R, et posons

$$\mathfrak{V}(x) = \bigcup_{\alpha} \mathfrak{V}_{\alpha}(x).$$

Il faut remarquer que tout point x de R possède un système $\mathfrak{U}(x)$ de voisinages satisfaisant aux axiomes (A) et (B) de M. Hausdorff, et que $\mathfrak{V}(x)$ est une base de $\mathfrak{U}(x)$.

D'abord, comparaisons deux définitions, par MM. Moore et Smith et par Prof. K. Kunugi, de la convergence d'une suite $\{x_{\alpha} \mid 0 \le \alpha < \omega\}$ des points de R.

MM. Moore et Smith: La suite $\{x_{\alpha}\}$ converge vers un point x de R lorsque

$$\forall V(x) \in \mathfrak{U}(x) \quad \exists \alpha_0(<\omega) \quad \{x_\alpha \mid \alpha_0 \leq \alpha\} \subseteq V(x).$$

Prof. K. Kunugi: La suite $\{x_{\alpha}\}$ converge vers un point x de R lorsque

 $\exists \mathfrak{U}'(\subseteq \mathfrak{U}(x)) \colon une \ suite \ des \ voisinages \ par \ rapport \ \grave{a} \ x^{2}$ $\forall V(x) \in \mathfrak{U}' \quad \exists \alpha_0 (<\omega) \quad \{x_\alpha \mid \alpha_0 \leq \alpha\} \subseteq V(x).$

En un mot, Prof. K Kunugi a employé une sous-famille \mathfrak{U}' de $\mathfrak{U}(x)$ tandis que MM. Moore et Smith ont fait la famille entière $\mathfrak{U}(x)$. Il va sans dire qu'il ne convient pas que la sous-famille \mathfrak{U}' ne contienne que voisinages grands. Donc, Prof. K. Kunugi a induit la notion de rang qui montre la grandeur de voisinage, et supposé que la sous-famille \mathfrak{U}' contienne voisinages assez petits.

On peut remplacer, dans cettes définitions des convergences, la suite $\{x_n\}$ par un ensemble des points de R supérieurement filtrant.³⁾

¹⁾ Axiome (a) de [1] p. 319.

²⁾ Voir [2] p. 551.

^{3) &}quot;Directed set of points" en anglais.